TY - JOUR
T1 - WIPI1-mediated mitophagy dysfunction in ventricular remodeling associated with long-term diabetes mellitus
AU - Liu, Daiqi
AU - Zhou, Lu
AU - Xu, Beizheng
AU - Tse, Gary
AU - Shao, Qingmiao
AU - Liu, Tong
N1 - Publisher Copyright:
© 2025 Elsevier Inc.
PY - 2025/6
Y1 - 2025/6
N2 - Background: WIPI1 is a member of the WD-repeat protein family that interacts with phosphoinositides and plays a crucial role in autophagy. This study investigated how WIPI1-mediated mitophagy dysfunction contributes to ventricular remodeling in rat and mouse models of diabetes mellitus. Methods: The study utilized a 32-weeks diabetic animal model to simulate long-term diabetic conditions. AAV9-cTNT-WIPI1 vectors were employed to overexpress WIPI1 in the myocardium. Cardiac function was assessed by echocardiography. Mitochondrial membrane potential was assessed using JC-1 dye. Oxygen consumption rates were quantified using an Oxygraph-O2K high-resolution respirometry. Results: Long-term diabetes led to decreased ejection fraction and fractional shortening associated with a marked increase in ventricular fibrosis and elevated expression of fibrotic markers such as collagen type I and periostin. Expression of autophagy markers such as LC3b-II and SQSTM1 was reduced, and colocalization with mitochondria was disrupted, suggesting failures in autophagosome formation and maturation. This impairment was further supported by decreased levels of mitophagy-related proteins (PINK and Parkin), indicating impaired mitophagy. WIPI1 knockdown led to mitochondrial dysfunction, characterized by loss of membrane potential and reduced respiratory capacity. Conclusion: WIPI1 is essential for proper mitophagy function. Its downregulation produces ventricular remodeling and dysfunction. These findings suggest that targeting WIPI1-mediated pathways could be a potential therapeutic strategy for treating diabetic cardiomyopathy by improving mitochondrial health and mitophagic processes.
AB - Background: WIPI1 is a member of the WD-repeat protein family that interacts with phosphoinositides and plays a crucial role in autophagy. This study investigated how WIPI1-mediated mitophagy dysfunction contributes to ventricular remodeling in rat and mouse models of diabetes mellitus. Methods: The study utilized a 32-weeks diabetic animal model to simulate long-term diabetic conditions. AAV9-cTNT-WIPI1 vectors were employed to overexpress WIPI1 in the myocardium. Cardiac function was assessed by echocardiography. Mitochondrial membrane potential was assessed using JC-1 dye. Oxygen consumption rates were quantified using an Oxygraph-O2K high-resolution respirometry. Results: Long-term diabetes led to decreased ejection fraction and fractional shortening associated with a marked increase in ventricular fibrosis and elevated expression of fibrotic markers such as collagen type I and periostin. Expression of autophagy markers such as LC3b-II and SQSTM1 was reduced, and colocalization with mitochondria was disrupted, suggesting failures in autophagosome formation and maturation. This impairment was further supported by decreased levels of mitophagy-related proteins (PINK and Parkin), indicating impaired mitophagy. WIPI1 knockdown led to mitochondrial dysfunction, characterized by loss of membrane potential and reduced respiratory capacity. Conclusion: WIPI1 is essential for proper mitophagy function. Its downregulation produces ventricular remodeling and dysfunction. These findings suggest that targeting WIPI1-mediated pathways could be a potential therapeutic strategy for treating diabetic cardiomyopathy by improving mitochondrial health and mitophagic processes.
KW - Diabetic cardiomyopathy
KW - Mitochondrial dysfunction
KW - Mitophagy
UR - http://www.scopus.com/inward/record.url?scp=85218494064&partnerID=8YFLogxK
U2 - 10.1016/j.cellsig.2025.111663
DO - 10.1016/j.cellsig.2025.111663
M3 - Article
C2 - 39961409
AN - SCOPUS:85218494064
SN - 0898-6568
VL - 130
JO - Cellular Signalling
JF - Cellular Signalling
M1 - 111663
ER -