Topological Quantum Switching Enabled Neuroelectronic Synaptic Modulators for Brain Computer Interface

Dani S. Assi, Hongli Huang, Vaithinathan Karthikeyan, Vaskuri C.S. Theja, Maria Merlyne de Souza, Vellaisamy A.L. Roy

Research output: Contribution to journalArticlepeer-review

Abstract

Aging and genetic-related disorders in the human brain lead to impairment of daily cognitive functions. Due to their neural synaptic complexity and the current limits of knowledge, reversing these disorders remains a substantial challenge for brain–computer interfaces (BCI). In this work, a solution is provided to potentially override aging and neurological disorder-related cognitive function loss in the human brain through the application of the authors’ quantum synaptic device. To illustrate this point, a quantum topological insulator (QTI) Bi2Se2Te-based synaptic neuroelectronic device, where the electric field-induced tunable topological surface edge states and quantum switching properties make them a premier option for establishing artificial synaptic neuromodulation approaches, is designed and developed. Leveraging these unique quantum synaptic properties, the developed synaptic device provides the capability to neuromodulate distorted neural signals, leading to the reversal of age-related disorders via BCI. With the synaptic neuroelectronic characteristics of this device, excellent efficacy in treating cognitive neural dysfunctions through modulated neuromorphic stimuli is demonstrated. As a proof of concept, real-time neuromodulation of electroencephalogram (EEG) deduced distorted event-related potentials (ERP) is demonstrated by modulation of the synaptic device array.

Original languageEnglish
Article number2306254
JournalAdvanced Materials
Volume36
Issue number27
DOIs
Publication statusPublished - 4 Jul 2024

Keywords

  • bioelectronics
  • brain–computer interface
  • neuromodulation
  • synaptic dynamics

Fingerprint

Dive into the research topics of 'Topological Quantum Switching Enabled Neuroelectronic Synaptic Modulators for Brain Computer Interface'. Together they form a unique fingerprint.

Cite this