TY - JOUR
T1 - Topological Quantum Switching Enabled Neuroelectronic Synaptic Modulators for Brain Computer Interface
AU - Assi, Dani S.
AU - Huang, Hongli
AU - Karthikeyan, Vaithinathan
AU - Theja, Vaskuri C.S.
AU - de Souza, Maria Merlyne
AU - Roy, Vellaisamy A.L.
N1 - Publisher Copyright:
© 2024 The Authors. Advanced Materials published by Wiley-VCH GmbH.
PY - 2024/7/4
Y1 - 2024/7/4
N2 - Aging and genetic-related disorders in the human brain lead to impairment of daily cognitive functions. Due to their neural synaptic complexity and the current limits of knowledge, reversing these disorders remains a substantial challenge for brain–computer interfaces (BCI). In this work, a solution is provided to potentially override aging and neurological disorder-related cognitive function loss in the human brain through the application of the authors’ quantum synaptic device. To illustrate this point, a quantum topological insulator (QTI) Bi2Se2Te-based synaptic neuroelectronic device, where the electric field-induced tunable topological surface edge states and quantum switching properties make them a premier option for establishing artificial synaptic neuromodulation approaches, is designed and developed. Leveraging these unique quantum synaptic properties, the developed synaptic device provides the capability to neuromodulate distorted neural signals, leading to the reversal of age-related disorders via BCI. With the synaptic neuroelectronic characteristics of this device, excellent efficacy in treating cognitive neural dysfunctions through modulated neuromorphic stimuli is demonstrated. As a proof of concept, real-time neuromodulation of electroencephalogram (EEG) deduced distorted event-related potentials (ERP) is demonstrated by modulation of the synaptic device array.
AB - Aging and genetic-related disorders in the human brain lead to impairment of daily cognitive functions. Due to their neural synaptic complexity and the current limits of knowledge, reversing these disorders remains a substantial challenge for brain–computer interfaces (BCI). In this work, a solution is provided to potentially override aging and neurological disorder-related cognitive function loss in the human brain through the application of the authors’ quantum synaptic device. To illustrate this point, a quantum topological insulator (QTI) Bi2Se2Te-based synaptic neuroelectronic device, where the electric field-induced tunable topological surface edge states and quantum switching properties make them a premier option for establishing artificial synaptic neuromodulation approaches, is designed and developed. Leveraging these unique quantum synaptic properties, the developed synaptic device provides the capability to neuromodulate distorted neural signals, leading to the reversal of age-related disorders via BCI. With the synaptic neuroelectronic characteristics of this device, excellent efficacy in treating cognitive neural dysfunctions through modulated neuromorphic stimuli is demonstrated. As a proof of concept, real-time neuromodulation of electroencephalogram (EEG) deduced distorted event-related potentials (ERP) is demonstrated by modulation of the synaptic device array.
KW - bioelectronics
KW - brain–computer interface
KW - neuromodulation
KW - synaptic dynamics
UR - http://www.scopus.com/inward/record.url?scp=85191807163&partnerID=8YFLogxK
U2 - 10.1002/adma.202306254
DO - 10.1002/adma.202306254
M3 - Article
C2 - 38532608
AN - SCOPUS:85191807163
SN - 0935-9648
VL - 36
JO - Advanced Materials
JF - Advanced Materials
IS - 27
M1 - 2306254
ER -