TY - JOUR
T1 - Tissue-Specific Uptake, Depuration Kinetics, and Suspected Metabolites of Three Emerging Per- and Polyfluoroalkyl Substances (PFASs) in Marine Medaka
AU - Wang, Qi
AU - Ruan, Yuefei
AU - Jin, Linjie
AU - Lin, Huiju
AU - Yan, Meng
AU - Gu, Jiarui
AU - Yuen, Calista N.T.
AU - Leung, Kenneth M.Y.
AU - Lam, Paul K.S.
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/5/17
Y1 - 2022/5/17
N2 - Restrictions on legacy per- and polyfluoroalkyl substances (PFASs) have led to the widespread use of emerging PFASs. However, their toxicokinetics have rarely been reported. Here, tissue-specific uptake and depuration kinetics of perfluoroethylcyclohexanesulfonate (PFECHS) and 6:2 and 8:2 chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs) were studied in marine medaka (Oryzias melastigma). The fish were exposed to these substances for 28 days (0.2 μg/L), followed by a clearance period of 14 days. The depuration constant (kd) of PFECHS [0.103 ± 0.009 day−1 (mean ± standard deviation)] was reported for the first time. Among the six studied tissues, the highest concentrations of 6:2 Cl-PFESA, 8:2 Cl-PFESA, and PFECHS were found in the liver [1540, 1230, and 188 ng (g of wet weight)−1, respectively] on day 28 while the longest residence times were found in the eyes (t1/2 values of 21.7 ± 4.3, 23.9 ± 1.5, and 17.3 ± 0.8 days, respectively). No significant positive correlation was found between the bioconcentration factors of the studied PFASs and the phospholipid or protein contents in different tissues of the studied fish. Potential metabolites of Cl-PFESAs, i.e., their hydrogen-substituted analogues (H-PFESAs), were identified by time-of-flight mass spectrometry. However, the biotransformation rates were low (<0.19%), indicating the poor capacity of marine medaka to metabolize Cl-PFESAs to H-PFESAs(Figure Presented).
AB - Restrictions on legacy per- and polyfluoroalkyl substances (PFASs) have led to the widespread use of emerging PFASs. However, their toxicokinetics have rarely been reported. Here, tissue-specific uptake and depuration kinetics of perfluoroethylcyclohexanesulfonate (PFECHS) and 6:2 and 8:2 chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs) were studied in marine medaka (Oryzias melastigma). The fish were exposed to these substances for 28 days (0.2 μg/L), followed by a clearance period of 14 days. The depuration constant (kd) of PFECHS [0.103 ± 0.009 day−1 (mean ± standard deviation)] was reported for the first time. Among the six studied tissues, the highest concentrations of 6:2 Cl-PFESA, 8:2 Cl-PFESA, and PFECHS were found in the liver [1540, 1230, and 188 ng (g of wet weight)−1, respectively] on day 28 while the longest residence times were found in the eyes (t1/2 values of 21.7 ± 4.3, 23.9 ± 1.5, and 17.3 ± 0.8 days, respectively). No significant positive correlation was found between the bioconcentration factors of the studied PFASs and the phospholipid or protein contents in different tissues of the studied fish. Potential metabolites of Cl-PFESAs, i.e., their hydrogen-substituted analogues (H-PFESAs), were identified by time-of-flight mass spectrometry. However, the biotransformation rates were low (<0.19%), indicating the poor capacity of marine medaka to metabolize Cl-PFESAs to H-PFESAs(Figure Presented).
KW - Cl-PFESA
KW - H-PFESA
KW - PFECHS
KW - bioconcentration factor
KW - biotransformation
KW - eyes
KW - toxicokinetics
UR - http://www.scopus.com/inward/record.url?scp=85128815890&partnerID=8YFLogxK
U2 - 10.1021/acs.est.1c07643
DO - 10.1021/acs.est.1c07643
M3 - Article
C2 - 35438980
AN - SCOPUS:85128815890
SN - 0013-936X
VL - 56
SP - 6182
EP - 6191
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 10
ER -