TY - JOUR
T1 - The linear-time-invariance notion of the Koopman analysis. Part 2. Dynamic Koopman modes, physics interpretations and phenomenological analysis of the prism wake
AU - Li, Cruz Y.
AU - Chen, Zengshun
AU - Tse, Tim K.T.
AU - Weerasuriya, Asiri Umenga
AU - Zhang, Xuelin
AU - Fu, Yunfei
AU - Lin, Xisheng
N1 - Publisher Copyright:
© The Author(s), 2023. Published by Cambridge University Press.
PY - 2023/3/25
Y1 - 2023/3/25
N2 - This serial work presents a linear-time-invariance (LTI) notion to the Koopman analysis, finding consistent and physically meaningful Koopman modes and addressing a long-standing problem of fluid mechanics: deterministically relating the fluid excitations and corresponding structure reactions. Part 1 (Li et al., Phys. Fluids, vol. 34, no. 12, p. 125136) developed the Koopman-LTI architecture and applied it to a pedagogical prism wake. By a systematic analytical procedure, the Koopman-LTI generated sampling-independent linear models that captured all the recurring dynamics embedded in the input data, finding six corresponding, orthogonal, and in-synch fluid-structure mechanisms. This Part 2 analyses the six modal duplets to underpin their physical implications, providing a phenomenological analysis of the subcritical prism wake. Visualizing the newly proposed dynamic Koopman modes, results show that two mechanisms at St1 = 0.1242 and St5 = 0.0497 describe shear layer dynamics, the associated Bérnard-Kármán shedding and turbulence production, which together overwhelm the upstream and crosswind walls by instigating a reattachment-type of reaction. The on-wind walls' dynamical similarity renders them a spectrally unified fluid-structure interface. Another four harmonic counterparts, namely the subharmonic at St7 = 0.0683, the second harmonic at St3 = 0.2422, and two ultra-harmonics at St7 = 0.1739 and St13 = 0.1935, govern the downstream wall. Finally, this work discovered the vortex breathing phenomenon, describing the constant energy exchange in the wake's circulation-entrainment-deposition processes. With the Koopman-LTI, one may pinpoint the exact excitations responsible for a specific structure reaction, benefiting future investigations into fluid-structure interactions and nonlinear, stochastic systems.
AB - This serial work presents a linear-time-invariance (LTI) notion to the Koopman analysis, finding consistent and physically meaningful Koopman modes and addressing a long-standing problem of fluid mechanics: deterministically relating the fluid excitations and corresponding structure reactions. Part 1 (Li et al., Phys. Fluids, vol. 34, no. 12, p. 125136) developed the Koopman-LTI architecture and applied it to a pedagogical prism wake. By a systematic analytical procedure, the Koopman-LTI generated sampling-independent linear models that captured all the recurring dynamics embedded in the input data, finding six corresponding, orthogonal, and in-synch fluid-structure mechanisms. This Part 2 analyses the six modal duplets to underpin their physical implications, providing a phenomenological analysis of the subcritical prism wake. Visualizing the newly proposed dynamic Koopman modes, results show that two mechanisms at St1 = 0.1242 and St5 = 0.0497 describe shear layer dynamics, the associated Bérnard-Kármán shedding and turbulence production, which together overwhelm the upstream and crosswind walls by instigating a reattachment-type of reaction. The on-wind walls' dynamical similarity renders them a spectrally unified fluid-structure interface. Another four harmonic counterparts, namely the subharmonic at St7 = 0.0683, the second harmonic at St3 = 0.2422, and two ultra-harmonics at St7 = 0.1739 and St13 = 0.1935, govern the downstream wall. Finally, this work discovered the vortex breathing phenomenon, describing the constant energy exchange in the wake's circulation-entrainment-deposition processes. With the Koopman-LTI, one may pinpoint the exact excitations responsible for a specific structure reaction, benefiting future investigations into fluid-structure interactions and nonlinear, stochastic systems.
KW - flow-structure interactions
KW - low-dimensional models
KW - wakes
UR - http://www.scopus.com/inward/record.url?scp=85151533881&partnerID=8YFLogxK
U2 - 10.1017/jfm.2023.36
DO - 10.1017/jfm.2023.36
M3 - Article
AN - SCOPUS:85151533881
SN - 0022-1120
VL - 959
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
M1 - A15
ER -