Territory-Wide Chinese Cohort of Long QT Syndrome: Random Survival Forest and Cox Analyses

Gary Tse, Sharen Lee, Jiandong Zhou, Tong Liu, Ian Chi Kei Wong, Chloe Mak, Ngai Shing Mok, Kamalan Jeevaratnam, Qingpeng Zhang, Shuk Han Cheng, Wing Tak Wong

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

Introduction: Congenital long QT syndrome (LQTS) is a cardiac ion channelopathy that predisposes affected individuals to spontaneous ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death (SCD). The main aims of the study were to: (1) provide a description of the local epidemiology of LQTS, (2) identify significant risk factors of ventricular arrhythmias in this cohort, and (3) compare the performance of traditional Cox regression with that of random survival forests. Methods: This was a territory-wide retrospective cohort study of patients diagnosed with congenital LQTS between 1997 and 2019. The primary outcome was spontaneous VT/VF. Results: This study included 121 patients [median age of initial presentation: 20 (interquartile range: 8–44) years, 62% female] with a median follow-up of 88 (51–143) months. Genetic analysis identified novel mutations in KCNQ1, KCNH2, SCN5A, ANK2, CACNA1C, CAV3, and AKAP9. During follow-up, 23 patients developed VT/VF. Univariate Cox regression analysis revealed that age [hazard ratio (HR): 1.02 (1.01–1.04), P = 0.007; optimum cut-off: 19 years], presentation with syncope [HR: 3.86 (1.43–10.42), P = 0.008] or VT/VF [HR: 3.68 (1.62–8.37), P = 0.002] and the presence of PVCs [HR: 2.89 (1.22–6.83), P = 0.015] were significant predictors of spontaneous VT/VF. Only initial presentation with syncope remained significant after multivariate adjustment [HR: 3.58 (1.32–9.71), P = 0.011]. Random survival forest (RSF) model provided significant improvement in prediction performance over Cox regression (precision: 0.80 vs. 0.69; recall: 0.79 vs. 0.68; AUC: 0.77 vs. 0.68; c-statistic: 0.79 vs. 0.67). Decision rules were generated by RSF model to predict VT/VF post-diagnosis. Conclusions: Effective risk stratification in congenital LQTS can be achieved by clinical history, electrocardiographic indices, and different investigation results, irrespective of underlying genetic defects. A machine learning approach using RSF can improve risk prediction over traditional Cox regression models.

Original languageEnglish
Article number608592
JournalFrontiers in Cardiovascular Medicine
Volume8
DOIs
Publication statusPublished - 2021
Externally publishedYes

Keywords

  • genetic variants
  • long QT syndrome
  • machine learning
  • random survival forest
  • risk stratification

Fingerprint

Dive into the research topics of 'Territory-Wide Chinese Cohort of Long QT Syndrome: Random Survival Forest and Cox Analyses'. Together they form a unique fingerprint.

Cite this