TY - JOUR
T1 - Territory-Wide Chinese Cohort of Long QT Syndrome
T2 - Random Survival Forest and Cox Analyses
AU - Tse, Gary
AU - Lee, Sharen
AU - Zhou, Jiandong
AU - Liu, Tong
AU - Wong, Ian Chi Kei
AU - Mak, Chloe
AU - Mok, Ngai Shing
AU - Jeevaratnam, Kamalan
AU - Zhang, Qingpeng
AU - Cheng, Shuk Han
AU - Wong, Wing Tak
N1 - Publisher Copyright:
Copyright © 2021 Tse, Lee, Zhou, Liu, Wong, Mak, Mok, Jeevaratnam, Zhang, Cheng and Wong.
PY - 2021
Y1 - 2021
N2 - Introduction: Congenital long QT syndrome (LQTS) is a cardiac ion channelopathy that predisposes affected individuals to spontaneous ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death (SCD). The main aims of the study were to: (1) provide a description of the local epidemiology of LQTS, (2) identify significant risk factors of ventricular arrhythmias in this cohort, and (3) compare the performance of traditional Cox regression with that of random survival forests. Methods: This was a territory-wide retrospective cohort study of patients diagnosed with congenital LQTS between 1997 and 2019. The primary outcome was spontaneous VT/VF. Results: This study included 121 patients [median age of initial presentation: 20 (interquartile range: 8–44) years, 62% female] with a median follow-up of 88 (51–143) months. Genetic analysis identified novel mutations in KCNQ1, KCNH2, SCN5A, ANK2, CACNA1C, CAV3, and AKAP9. During follow-up, 23 patients developed VT/VF. Univariate Cox regression analysis revealed that age [hazard ratio (HR): 1.02 (1.01–1.04), P = 0.007; optimum cut-off: 19 years], presentation with syncope [HR: 3.86 (1.43–10.42), P = 0.008] or VT/VF [HR: 3.68 (1.62–8.37), P = 0.002] and the presence of PVCs [HR: 2.89 (1.22–6.83), P = 0.015] were significant predictors of spontaneous VT/VF. Only initial presentation with syncope remained significant after multivariate adjustment [HR: 3.58 (1.32–9.71), P = 0.011]. Random survival forest (RSF) model provided significant improvement in prediction performance over Cox regression (precision: 0.80 vs. 0.69; recall: 0.79 vs. 0.68; AUC: 0.77 vs. 0.68; c-statistic: 0.79 vs. 0.67). Decision rules were generated by RSF model to predict VT/VF post-diagnosis. Conclusions: Effective risk stratification in congenital LQTS can be achieved by clinical history, electrocardiographic indices, and different investigation results, irrespective of underlying genetic defects. A machine learning approach using RSF can improve risk prediction over traditional Cox regression models.
AB - Introduction: Congenital long QT syndrome (LQTS) is a cardiac ion channelopathy that predisposes affected individuals to spontaneous ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death (SCD). The main aims of the study were to: (1) provide a description of the local epidemiology of LQTS, (2) identify significant risk factors of ventricular arrhythmias in this cohort, and (3) compare the performance of traditional Cox regression with that of random survival forests. Methods: This was a territory-wide retrospective cohort study of patients diagnosed with congenital LQTS between 1997 and 2019. The primary outcome was spontaneous VT/VF. Results: This study included 121 patients [median age of initial presentation: 20 (interquartile range: 8–44) years, 62% female] with a median follow-up of 88 (51–143) months. Genetic analysis identified novel mutations in KCNQ1, KCNH2, SCN5A, ANK2, CACNA1C, CAV3, and AKAP9. During follow-up, 23 patients developed VT/VF. Univariate Cox regression analysis revealed that age [hazard ratio (HR): 1.02 (1.01–1.04), P = 0.007; optimum cut-off: 19 years], presentation with syncope [HR: 3.86 (1.43–10.42), P = 0.008] or VT/VF [HR: 3.68 (1.62–8.37), P = 0.002] and the presence of PVCs [HR: 2.89 (1.22–6.83), P = 0.015] were significant predictors of spontaneous VT/VF. Only initial presentation with syncope remained significant after multivariate adjustment [HR: 3.58 (1.32–9.71), P = 0.011]. Random survival forest (RSF) model provided significant improvement in prediction performance over Cox regression (precision: 0.80 vs. 0.69; recall: 0.79 vs. 0.68; AUC: 0.77 vs. 0.68; c-statistic: 0.79 vs. 0.67). Decision rules were generated by RSF model to predict VT/VF post-diagnosis. Conclusions: Effective risk stratification in congenital LQTS can be achieved by clinical history, electrocardiographic indices, and different investigation results, irrespective of underlying genetic defects. A machine learning approach using RSF can improve risk prediction over traditional Cox regression models.
KW - genetic variants
KW - long QT syndrome
KW - machine learning
KW - random survival forest
KW - risk stratification
UR - http://www.scopus.com/inward/record.url?scp=85100827096&partnerID=8YFLogxK
U2 - 10.3389/fcvm.2021.608592
DO - 10.3389/fcvm.2021.608592
M3 - Article
AN - SCOPUS:85100827096
VL - 8
JO - Frontiers in Cardiovascular Medicine
JF - Frontiers in Cardiovascular Medicine
M1 - 608592
ER -