TY - JOUR
T1 - Single machine scheduling with a variable common due date and resource-dependent processing times
AU - Ng Daniel, C. T.D.
AU - Cheng, T. C.Edwin
AU - Kovalyov, Mikhail Y.
AU - Lam, S. S.
N1 - Funding Information:
This research is supported in part by the RGC of the HKSAR under grant number PolyU5009/97H, and PolyU grant number G-T246. Additionally, the research of M.Y. Kovalyov is supported by INTAS under grant number 00-217.
PY - 2003/7
Y1 - 2003/7
N2 - The problem of scheduling n jobs with a variable common due date on a single machine is studied. It is assumed that the job processing times are non-increasing linear functions of an equal amount of a resource allocated to the jobs. The due date and resource values can be continuous or discrete. The objective is to minimize a linear combination of scheduling, due date assignment and resource consumption costs. The resource consumption cost function may be non-monotonous. Algorithms with O(n2 log n) running times are presented for scheduling costs involving earliness/tardiness and number of tardy jobs. Computational experiments show that the algorithms can solve problems with n = 5,000 in less than a minute on a standard PC. We study a problem that combines scheduling, common due date assignment and resource allocation decisions. Due date scheduling is an important area of scheduling research because it focuses on customer satisfaction. Variable common due date applies to situations where several items constitute a single customer's order and the due date for the order can be negotiated. Resource-dependent processing times appear whenever resources can be employed to adjust processing requirements. Polynomial time algorithms are presented for minimizing a linear combination of scheduling, due date assignment and resource consumption costs. Computational experiments demonstrate their efficiency in solving large-scale problem instances.
AB - The problem of scheduling n jobs with a variable common due date on a single machine is studied. It is assumed that the job processing times are non-increasing linear functions of an equal amount of a resource allocated to the jobs. The due date and resource values can be continuous or discrete. The objective is to minimize a linear combination of scheduling, due date assignment and resource consumption costs. The resource consumption cost function may be non-monotonous. Algorithms with O(n2 log n) running times are presented for scheduling costs involving earliness/tardiness and number of tardy jobs. Computational experiments show that the algorithms can solve problems with n = 5,000 in less than a minute on a standard PC. We study a problem that combines scheduling, common due date assignment and resource allocation decisions. Due date scheduling is an important area of scheduling research because it focuses on customer satisfaction. Variable common due date applies to situations where several items constitute a single customer's order and the due date for the order can be negotiated. Resource-dependent processing times appear whenever resources can be employed to adjust processing requirements. Polynomial time algorithms are presented for minimizing a linear combination of scheduling, due date assignment and resource consumption costs. Computational experiments demonstrate their efficiency in solving large-scale problem instances.
KW - Common due date assignment
KW - Controllable processing times
KW - Single machine scheduling
UR - http://www.scopus.com/inward/record.url?scp=0037410951&partnerID=8YFLogxK
U2 - 10.1016/S0305-0548(02)00066-7
DO - 10.1016/S0305-0548(02)00066-7
M3 - Article
AN - SCOPUS:0037410951
SN - 0305-0548
VL - 30
SP - 1173
EP - 1185
JO - Computers and Operations Research
JF - Computers and Operations Research
IS - 8
ER -