TY - JOUR
T1 - Patent mining on soil pollution remediation technology from the perspective of technological trajectory
AU - Qi, Zefeng
AU - Han, Yixin
AU - Afrane, Sandylove
AU - Liu, Xi
AU - Zhang, Mingqi
AU - Crittenden, John
AU - Chen, Jian Lin
AU - Mao, Guozhu
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Recent years have seen a marked growth in soil environmental problems, however, the research & development (R&D) direction of soil pollution remediation technology (SPRT) for addressing related challenges to the global ecosystem is still unclear. Patent is the most effective carrier of technological information. Therefore, this study investigates the status and future direction of SPRT through the analysis and mining of 14,475 patents from 1971 to 2020. In 2006–2020, 14,435 SPRT patents (79% of the total) were published, which is in the development stage. By measuring the proportion of high-value patents, determined by the ratio of the number of patent families containing two or more patents (PF2) to that containing at least one patent (PF1), we found that United States (PF2/PF1 = 0.711), Japan (PF2/PF1 = 0.500), and South Korea (PF2/PF1 = 0.431) hold a monopoly. International patent organizations serve as a bridge for technology transfer. Patent CN101947539-A measured by structural hole index (Effective size = 98.194, Efficiency = 0.926) has the most significant technological influence. Therefore, in order to accomplish the technological transition and improve the soil remediation capacity, more attention should be paid to the microbial-assisted phytoremediation technology related to inorganic pollutants, hyperaccumulators and stabilizers. Additionally, patents CN102834190-A (Effective size = 23.930, Efficiency = 0.855, Constraint = 0.141, Hierarchy = 0.089) and CN105855289 (Effective size = 21.453, Efficiency = 0.795 Constraint = 0.149, Hierarchy = 0.086) are both at the location of structural holes. So, more research should be carried out on green and cost-effective solutions for reducing organic pollutants in soil remediation. The current study identifies opportunities for innovations and breakthroughs in SPRT and offers relevant information on technological development prospects.
AB - Recent years have seen a marked growth in soil environmental problems, however, the research & development (R&D) direction of soil pollution remediation technology (SPRT) for addressing related challenges to the global ecosystem is still unclear. Patent is the most effective carrier of technological information. Therefore, this study investigates the status and future direction of SPRT through the analysis and mining of 14,475 patents from 1971 to 2020. In 2006–2020, 14,435 SPRT patents (79% of the total) were published, which is in the development stage. By measuring the proportion of high-value patents, determined by the ratio of the number of patent families containing two or more patents (PF2) to that containing at least one patent (PF1), we found that United States (PF2/PF1 = 0.711), Japan (PF2/PF1 = 0.500), and South Korea (PF2/PF1 = 0.431) hold a monopoly. International patent organizations serve as a bridge for technology transfer. Patent CN101947539-A measured by structural hole index (Effective size = 98.194, Efficiency = 0.926) has the most significant technological influence. Therefore, in order to accomplish the technological transition and improve the soil remediation capacity, more attention should be paid to the microbial-assisted phytoremediation technology related to inorganic pollutants, hyperaccumulators and stabilizers. Additionally, patents CN102834190-A (Effective size = 23.930, Efficiency = 0.855, Constraint = 0.141, Hierarchy = 0.089) and CN105855289 (Effective size = 21.453, Efficiency = 0.795 Constraint = 0.149, Hierarchy = 0.086) are both at the location of structural holes. So, more research should be carried out on green and cost-effective solutions for reducing organic pollutants in soil remediation. The current study identifies opportunities for innovations and breakthroughs in SPRT and offers relevant information on technological development prospects.
KW - Contaminated soil restoration
KW - Patent analysis
KW - Social network analysis
KW - Technical prediction
UR - http://www.scopus.com/inward/record.url?scp=85142324114&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2022.120661
DO - 10.1016/j.envpol.2022.120661
M3 - Article
C2 - 36403878
AN - SCOPUS:85142324114
SN - 0269-7491
VL - 316
JO - Environmental Pollution
JF - Environmental Pollution
M1 - 120661
ER -