TY - JOUR
T1 - Particle size-dependent and route-specific exposure to liquid crystal monomers in indoor air
T2 - Implications for human health risk estimations
AU - Lin, Huiju
AU - Li, Xinxing
AU - Qin, Xian
AU - Cao, Yaru
AU - Ruan, Yuefei
AU - Leung, Michael K.H.
AU - Leung, Kenneth M.Y.
AU - Lam, Paul K.S.
AU - He, Yuhe
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2024/1/15
Y1 - 2024/1/15
N2 - In indoor environments, liquid crystal monomers (LCMs) released from display devices is a significant concern, necessitating a comprehensive investigation into their distribution behaviors and potential health risks. Herein, we examined various LCMs in educational and workplace air and compared their associated health risks through inhalation and dermal absorption routes. 4-propyl-4′-vinylbicyclohexyl (3VbcH) and 4,4′-bis(4-propylcyclohexyl) biphenyl (b3CHB) with median concentrations of 101 and 1460 pg m−3, were the predominant LCMs in gaseous and particulate phases, respectively. Composition and concentration of LCMs differed substantially between sampling locations due to the discrepancy in the quantity, types, and brands of electronic devices in each location. Three models were further employed to estimate the gas−particle partitioning of LCMs and compared with the measured data. The results indicated that the H[sbnd]B model exhibited the best overall performance, while the L[sbnd]M[sbnd]Y model provided a good fit for LCMs with higher log Koa (>12.48). Monte Carlo simulation was used to estimate and compared the probabilistic daily exposure dose and potential health risks. Inhalation exposure of LCMs was significantly greater than the dermal absorption by approximately 1–2 orders of magnitude, implying that it was the primary exposure route of human exposure to airborne LCMs. However, certain LCMs exhibited comparable or higher exposure levels via the dermal absorption route due to the significant overall permeability coefficient. Furthermore, the particle size was discovered to impact the daily exposure dose, contingent on the particle mass-transfer coefficients and accumulation of LCMs on diverse particle sizes. Although the probabilistic non-carcinogenic risks of LCMs were relatively low, their chronic effects on human beings merit further investigations. Overall, this study provides insights into the contamination and potential health risks of LCMs in indoor environments, underscoring the importance of considering particle sizes and all possible exposure pathways in estimating human health risks caused by airborne organic contaminants.
AB - In indoor environments, liquid crystal monomers (LCMs) released from display devices is a significant concern, necessitating a comprehensive investigation into their distribution behaviors and potential health risks. Herein, we examined various LCMs in educational and workplace air and compared their associated health risks through inhalation and dermal absorption routes. 4-propyl-4′-vinylbicyclohexyl (3VbcH) and 4,4′-bis(4-propylcyclohexyl) biphenyl (b3CHB) with median concentrations of 101 and 1460 pg m−3, were the predominant LCMs in gaseous and particulate phases, respectively. Composition and concentration of LCMs differed substantially between sampling locations due to the discrepancy in the quantity, types, and brands of electronic devices in each location. Three models were further employed to estimate the gas−particle partitioning of LCMs and compared with the measured data. The results indicated that the H[sbnd]B model exhibited the best overall performance, while the L[sbnd]M[sbnd]Y model provided a good fit for LCMs with higher log Koa (>12.48). Monte Carlo simulation was used to estimate and compared the probabilistic daily exposure dose and potential health risks. Inhalation exposure of LCMs was significantly greater than the dermal absorption by approximately 1–2 orders of magnitude, implying that it was the primary exposure route of human exposure to airborne LCMs. However, certain LCMs exhibited comparable or higher exposure levels via the dermal absorption route due to the significant overall permeability coefficient. Furthermore, the particle size was discovered to impact the daily exposure dose, contingent on the particle mass-transfer coefficients and accumulation of LCMs on diverse particle sizes. Although the probabilistic non-carcinogenic risks of LCMs were relatively low, their chronic effects on human beings merit further investigations. Overall, this study provides insights into the contamination and potential health risks of LCMs in indoor environments, underscoring the importance of considering particle sizes and all possible exposure pathways in estimating human health risks caused by airborne organic contaminants.
KW - Dermal exposure
KW - Gas−particle partitioning
KW - Indoor environment
KW - Monte Carlo simulation
KW - Non-carcinogenic health risks
UR - http://www.scopus.com/inward/record.url?scp=85176104057&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2023.168328
DO - 10.1016/j.scitotenv.2023.168328
M3 - Article
C2 - 37926258
AN - SCOPUS:85176104057
SN - 0048-9697
VL - 908
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 168328
ER -