Osmotic stress induces gut microbiota community shift in fish

Keng Po Lai, Xiao Lin, Nathan Tam, Jeff Cheuk Hin Ho, Marty Kwok-Shing Wong, Jie Gu, Ting Fung Chan, William Ka Fai Tse

Research output: Contribution to journalArticlepeer-review

32 Citations (Scopus)

Abstract

Alteration of the gut microbiota plays an important role in animal health and metabolic diseases. However, little is known with respect to the influence of environmental osmolality on the gut microbial community. The aim of the current study was to determine whether the reduction in salinity affects the gut microbiota and identify its potential role in salinity acclimation. Using Oryzias melastigma as a model organism to perform progressive hypotonic transfer experiments, we evaluated three conditions: seawater control (SW), SW to 50% sea water transfer (SFW) and SW to SFW to freshwater transfer (FW). Our results showed that the SFW and FW transfer groups contained higher operational taxonomic unit microbiota diversities. The dominant bacteria in all conditions constituted the phylum Proteobacteria, with the majority in the SW and SFW transfer gut comprising Vibrio at the genus level, whereas this population was replaced by Pseudomonas in the FW transfer gut. Furthermore, our data revealed that the FW transfer gut microbiota exhibited a reduced renin–angiotensin system, which is important in SW acclimation. In addition, induced detoxification and immune mechanisms were found in the FW transfer gut microbiota. The shift of the bacteria community in different osmolality environments indicated possible roles of bacteria in facilitating host acclimation.

Original languageEnglish
Pages (from-to)3784-3802
Number of pages19
JournalEnvironmental Microbiology
Volume22
Issue number9
DOIs
Publication statusPublished - Sept 2020

Fingerprint

Dive into the research topics of 'Osmotic stress induces gut microbiota community shift in fish'. Together they form a unique fingerprint.

Cite this