TY - JOUR
T1 - Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China
AU - Wang, Jie
AU - Liu, Guijian
AU - Liu, Houqi
AU - Lam, Paul K.S.
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/4/1
Y1 - 2017/4/1
N2 - A total of 211 water samples were collected from 53 key sampling points from 5–10th July 2013 at four different depths (0 m, 2 m, 4 m, 8 m) and at different sites in the Huaihe River, Anhui, China. These points monitored for 18 parameters (water temperature, pH, TN, TP, TOC, Cu, Pb, Zn, Ni, Co, Cr, Cd, Mn, B, Fe, Al, Mg, and Ba). The spatial variability, contamination sources and health risk of trace elements as well as the river water quality were investigated. Our results were compared with national (CSEPA) and international (WHO, USEPA) drinking water guidelines, revealing that Zn, Cd and Pb were the dominant pollutants in the water body. Application of different multivariate statistical approaches, including correlation matrix and factor/principal component analysis (FA/PCA), to assess the origins of the elements in the Huaihe River, identified three source types that accounted for 79.31% of the total variance. Anthropogenic activities were considered to contribute much of the Zn, Cd, Pb, Ni, Co, and Mn via industrial waste, coal combustion, and vehicle exhaust; Ba, B, Cr and Cu were controlled by mixed anthropogenic and natural sources, and Mg, Fe and Al had natural origins from weathered rocks and crustal materials. Cluster analysis (CA) was used to classify the 53 sample points into three groups of water pollution, high pollution, moderate pollution, and low pollution, reflecting influences from tributaries, power plants and vehicle exhaust, and agricultural activities, respectively. The results of the water quality index (WQI) indicate that water in the Huaihe River is heavily polluted by trace elements, so approximately 96% of the water in the Huaihe River is unsuitable for drinking. A health risk assessment using the hazard quotient and index (HQ/HI) recommended by the USEPA suggests that Co, Cd and Pb in the river could cause non-carcinogenic harm to human health.
AB - A total of 211 water samples were collected from 53 key sampling points from 5–10th July 2013 at four different depths (0 m, 2 m, 4 m, 8 m) and at different sites in the Huaihe River, Anhui, China. These points monitored for 18 parameters (water temperature, pH, TN, TP, TOC, Cu, Pb, Zn, Ni, Co, Cr, Cd, Mn, B, Fe, Al, Mg, and Ba). The spatial variability, contamination sources and health risk of trace elements as well as the river water quality were investigated. Our results were compared with national (CSEPA) and international (WHO, USEPA) drinking water guidelines, revealing that Zn, Cd and Pb were the dominant pollutants in the water body. Application of different multivariate statistical approaches, including correlation matrix and factor/principal component analysis (FA/PCA), to assess the origins of the elements in the Huaihe River, identified three source types that accounted for 79.31% of the total variance. Anthropogenic activities were considered to contribute much of the Zn, Cd, Pb, Ni, Co, and Mn via industrial waste, coal combustion, and vehicle exhaust; Ba, B, Cr and Cu were controlled by mixed anthropogenic and natural sources, and Mg, Fe and Al had natural origins from weathered rocks and crustal materials. Cluster analysis (CA) was used to classify the 53 sample points into three groups of water pollution, high pollution, moderate pollution, and low pollution, reflecting influences from tributaries, power plants and vehicle exhaust, and agricultural activities, respectively. The results of the water quality index (WQI) indicate that water in the Huaihe River is heavily polluted by trace elements, so approximately 96% of the water in the Huaihe River is unsuitable for drinking. A health risk assessment using the hazard quotient and index (HQ/HI) recommended by the USEPA suggests that Co, Cd and Pb in the river could cause non-carcinogenic harm to human health.
KW - Hazard index
KW - Hazard quotient
KW - Huaihe River
KW - Multivariate statistical analysis
KW - Trace elements
KW - Water quality index
UR - http://www.scopus.com/inward/record.url?scp=85009962410&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2017.01.088
DO - 10.1016/j.scitotenv.2017.01.088
M3 - Article
C2 - 28126280
AN - SCOPUS:85009962410
SN - 0048-9697
VL - 583
SP - 421
EP - 431
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -