TY - JOUR
T1 - Microbial population dynamics and enzyme activities during composting
AU - Tiquia, Sonia M.
AU - Wan, H. C.
AU - Tam, Nora F.Y.
N1 - Funding Information:
The authors thank the Central Matching Fund (Post-doctoral Fellowship) of City University of Hong Kong, and the University Grant Council (UGC) for the financial assistance provided for this project. This paper was presented at the International Conference on Microbiology of Composting and Other Biodegradation Processes held in Innsbruck, Austria on September 18-20, 2000.
PY - 2002
Y1 - 2002
N2 - The changes in population size of different microbial groups (total aerobic heterotrophs, actinomycetes, fungi, fecal coliforms, ammonium- and nitrite-oxidizing bacteria, and denitrifying bacteria) and the activities of 19 different enzymes (three phosphatases, three esterases, two proteases, three amino-peptidases, and eight glycosyl- hydrolases) were examined during cocomposting of poultry litter (a mixture of poultry manure, waste feed, feathers, and wood shavings) and yard trimmings (a mixture of grass clippings, leaves, and wood barks). Three piles with forced aeration were established by mixing 2:1 (v/v) ration of poultry litter and yard trimmings. During composting, samples were taken at three different locations (top, middle, and bottom) of the forced aeration piles for microbial and enzyme analyses. Results demonstrated that population size of different microbial groups was not a limiting factor in this composting process as the microorganisms in the poultry litter + yard trimmings compost are in great abundance. Although the numbers of these microbial groups were reduced by high temperature, their populations multiplied rapidly as composting progressed. Fecal coliforms were eliminated by day 49, suggesting that the poultry litter + yard trimmings compost showed an overall increase in diversity and relative abundance of extracellular enzymes present as composting progressed. The population of fungi and actinomycetes (microorganisms active in degradation of cellulose, hemicellulose, and lignin) were positively correlated with esterase, valine amino-peptidase, α-galactosidase, β-glucosidase, and lipase. Of all 19 enzymes examined, ß-galactosidase (enzyme involved in the hydrolysis of lactose) had the most significant positive correlation with microbial populations, such as total aerobic heterotrophs, ammonium- and nitrite-oxidizing bacteria, denitrifying bacteria, and fecal coliforms. Cystine amino peptidase, chymotrypsin, and trypsin showed no evidence of activity during the entire period of composting. This composting process represented a combined activity of a wide succession of environments in the compost pile as one microbial group/enzyme overlapped the other and each emerged gradually as a result of the continual change in temperature as well as moisture content, O2 and CO2 level, and progressive breakdown of complex compounds to simpler ones.
AB - The changes in population size of different microbial groups (total aerobic heterotrophs, actinomycetes, fungi, fecal coliforms, ammonium- and nitrite-oxidizing bacteria, and denitrifying bacteria) and the activities of 19 different enzymes (three phosphatases, three esterases, two proteases, three amino-peptidases, and eight glycosyl- hydrolases) were examined during cocomposting of poultry litter (a mixture of poultry manure, waste feed, feathers, and wood shavings) and yard trimmings (a mixture of grass clippings, leaves, and wood barks). Three piles with forced aeration were established by mixing 2:1 (v/v) ration of poultry litter and yard trimmings. During composting, samples were taken at three different locations (top, middle, and bottom) of the forced aeration piles for microbial and enzyme analyses. Results demonstrated that population size of different microbial groups was not a limiting factor in this composting process as the microorganisms in the poultry litter + yard trimmings compost are in great abundance. Although the numbers of these microbial groups were reduced by high temperature, their populations multiplied rapidly as composting progressed. Fecal coliforms were eliminated by day 49, suggesting that the poultry litter + yard trimmings compost showed an overall increase in diversity and relative abundance of extracellular enzymes present as composting progressed. The population of fungi and actinomycetes (microorganisms active in degradation of cellulose, hemicellulose, and lignin) were positively correlated with esterase, valine amino-peptidase, α-galactosidase, β-glucosidase, and lipase. Of all 19 enzymes examined, ß-galactosidase (enzyme involved in the hydrolysis of lactose) had the most significant positive correlation with microbial populations, such as total aerobic heterotrophs, ammonium- and nitrite-oxidizing bacteria, denitrifying bacteria, and fecal coliforms. Cystine amino peptidase, chymotrypsin, and trypsin showed no evidence of activity during the entire period of composting. This composting process represented a combined activity of a wide succession of environments in the compost pile as one microbial group/enzyme overlapped the other and each emerged gradually as a result of the continual change in temperature as well as moisture content, O2 and CO2 level, and progressive breakdown of complex compounds to simpler ones.
UR - http://www.scopus.com/inward/record.url?scp=0036493803&partnerID=8YFLogxK
U2 - 10.1080/1065657X.2002.10702075
DO - 10.1080/1065657X.2002.10702075
M3 - Article
AN - SCOPUS:0036493803
SN - 1065-657X
VL - 10
SP - 150
EP - 161
JO - Compost Science and Utilization
JF - Compost Science and Utilization
IS - 2
ER -