Macroalgal morphology mediates microplastic accumulation on thallus and in sediments

Ka Long Ng, Ki Fung Suk, Kam Wing Cheung, Roden Hon Tsung Shek, Sidney Man Ngai Chan, Nora Fung Yee Tam, Siu Gin Cheung, James Kar Hei Fang, Hoi Shing Lo

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

The accumulation process of microplastics (MPs) is a key to understanding their fate in the environment. However, there is limited information about the short-term accumulation of MPs on macrophytes. The ability of macrophyte to attenuate wave and reduce current velocity is potentially facilitating MPs deposition. We hypothesize that the macroalgae retain MPs with their morphologies (filamentous and non-filamentous) being one of the factors to govern retention. Our hypothesis was tested by field observation during the dry season in Hong Kong when the macroalgae communities were the most diverse. MPs per biomass, surface area, or interstitial volume were used to represent the abundances on macroalgae. We found that filamentous algae retained a 2.35 times higher number of MPs when compared with non-filamentous algae if unit per biomass was considered. Other units, however, showed insignificant differences in MPs abundances between algal morphologies. Fibre was the most dominant shape of MPs with no significant difference in their abundances between filamentous and non-filamentous algae, suggesting fibres were retained regardless of the algal morphologies. To further evaluate the potential accumulation in the environment, sediment samples were also collected under the algal mat and immediate vicinity (~50 cm) of the algal mat. We found that sediment collected under the vegetated area contained significantly higher MPs. This was 3.39 times higher than the unvegetated area. Sediment collected under/near filamentous algae retained much higher abundances of MPs than those of non-filamentous algae. Provided that the observed retention of MPs on macroalgae, we speculate macrophyte system is one of the short-term MPs accumulation hotspots where the temporal increase of MPs depends on the seasonality of macrophyte in a given region.

Original languageEnglish
Article number153987
JournalScience of the Total Environment
Volume825
DOIs
Publication statusPublished - 15 Jun 2022

Keywords

  • Macroalgae
  • Macrophytes
  • Microplastic deposition
  • Microplastics
  • Particle retention
  • Sediment

Fingerprint

Dive into the research topics of 'Macroalgal morphology mediates microplastic accumulation on thallus and in sediments'. Together they form a unique fingerprint.

Cite this