Learning event-based motion deblurring

Zhe Jiang, Yu Zhang, Dongqing Zou, Jimmy Ren, Jiancheng Lv, Yebin Liu

Research output: Contribution to journalConference articlepeer-review

153 Citations (Scopus)

Abstract

Recovering sharp video sequence from a motion-blurred image is highly ill-posed due to the significant loss of motion information in the blurring process. For event-based cameras, however, fast motion can be captured as events at high time rate, raising new opportunities to exploring effective solutions. In this paper, we start from a sequential formulation of event-based motion deblurring, then show how its optimization can be unfolded with a novel end-to-end deep architecture. The proposed architecture is a convolutional recurrent neural network that integrates visual and temporal knowledge of both global and local scales in principled manner. To further improve the reconstruction, we propose a differentiable directional event filtering module to effectively extract rich boundary prior from the stream of events. We conduct extensive experiments on the synthetic GoPro dataset and a large newly introduced dataset captured by a DAVIS240C camera. The proposed approach achieves state-of-the-art reconstruction quality, and generalizes better to handling real-world motion blur.

Original languageEnglish
Article number9156741
Pages (from-to)3317-3326
Number of pages10
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
Publication statusPublished - 2020
Externally publishedYes
Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States
Duration: 14 Jun 202019 Jun 2020

Fingerprint

Dive into the research topics of 'Learning event-based motion deblurring'. Together they form a unique fingerprint.

Cite this