Learning deep priors for image dehazing

Yang Liu, Jinshan Pan, Jimmy Ren, Zhixun Su

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

132 Citations (Scopus)

Abstract

Image dehazing is a well-known ill-posed problem, which usually requires some image priors to make the problem well-posed. We propose an effective iteration algorithm with deep CNNs to learn haze-relevant priors for image dehazing. We formulate the image dehazing problem as the minimization of a variational model with favorable data fidelity terms and prior terms to regularize the model. We solve the variational model based on the classical gradient descent method with built-in deep CNNs so that iteration-wise image priors for the atmospheric light, transmission map and clear image can be well estimated. Our method combines the properties of both the physical formation of image dehazing as well as deep learning approaches. We show that it is able to generate clear images as well as accurate atmospheric light and transmission maps. Extensive experimental results demonstrate that the proposed algorithm performs favorably against state-of-the-art methods in both benchmark datasets and real-world images.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Computer Vision, ICCV 2019
Pages2492-2500
Number of pages9
ISBN (Electronic)9781728148038
DOIs
Publication statusPublished - Oct 2019
Externally publishedYes
Event17th IEEE/CVF International Conference on Computer Vision, ICCV 2019 - Seoul, Korea, Republic of
Duration: 27 Oct 20192 Nov 2019

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference17th IEEE/CVF International Conference on Computer Vision, ICCV 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period27/10/192/11/19

Fingerprint

Dive into the research topics of 'Learning deep priors for image dehazing'. Together they form a unique fingerprint.

Cite this