TY - JOUR
T1 - Intrinsic debromination potential of polybrominated diphenyl ethers in different sediment slurries
AU - Zhu, Haowen
AU - Wang, Ying
AU - Wang, Xiaowei
AU - Luan, Tiangang
AU - Tam, Nora F.Y.
PY - 2014/5/6
Y1 - 2014/5/6
N2 - The fate of BDE-153 (BDE = brominated diphenyl ethers) in different mangrove, fresh water pond, and marine subsurface sediments collected from Hong Kong SAR was investigated. Under anaerobic conditions, all sediments showed good intrinsic abilities to reductively debrominate BDE-153, producing debromination products ranging from hexa- to mono-BDEs in 90 days. The half-lives of BDE-153 in eight different sediments varied from 7.6 to 165 days, with higher debromination in mangrove than marine and fresh water pond sediments. All sediments exhibited the preference in removing the bromine in para, followed by meta, and the lowest in ortho positions; however, fresh water pond sediments had relatively higher fractions of meta (BDE-99) and ortho substitution (BDE-118) of the three penta-BDE products. Mai Po mangrove and fresh water pond subsurface sediments were also capable of debrominating BDE-47 in 90 days of anaerobic incubation with half-lives of 76.2 and 56.9 days, respectively; but not BDE-209. BDE-47, -153, and -209 in Mai Po surface sediment were not transformed under 30 day aerobic incubation. This study demonstrated that the microbial-mediated debromination of BDE-47 and -153 occurred in natural subsurface sediments under anaerobic conditions although the rates and pathways varied among the sediment types.
AB - The fate of BDE-153 (BDE = brominated diphenyl ethers) in different mangrove, fresh water pond, and marine subsurface sediments collected from Hong Kong SAR was investigated. Under anaerobic conditions, all sediments showed good intrinsic abilities to reductively debrominate BDE-153, producing debromination products ranging from hexa- to mono-BDEs in 90 days. The half-lives of BDE-153 in eight different sediments varied from 7.6 to 165 days, with higher debromination in mangrove than marine and fresh water pond sediments. All sediments exhibited the preference in removing the bromine in para, followed by meta, and the lowest in ortho positions; however, fresh water pond sediments had relatively higher fractions of meta (BDE-99) and ortho substitution (BDE-118) of the three penta-BDE products. Mai Po mangrove and fresh water pond subsurface sediments were also capable of debrominating BDE-47 in 90 days of anaerobic incubation with half-lives of 76.2 and 56.9 days, respectively; but not BDE-209. BDE-47, -153, and -209 in Mai Po surface sediment were not transformed under 30 day aerobic incubation. This study demonstrated that the microbial-mediated debromination of BDE-47 and -153 occurred in natural subsurface sediments under anaerobic conditions although the rates and pathways varied among the sediment types.
UR - http://www.scopus.com/inward/record.url?scp=84899846043&partnerID=8YFLogxK
U2 - 10.1021/es4053818
DO - 10.1021/es4053818
M3 - Article
C2 - 24679249
AN - SCOPUS:84899846043
SN - 0013-936X
VL - 48
SP - 4724
EP - 4731
JO - Environmental Science and Technology
JF - Environmental Science and Technology
IS - 9
ER -