TY - GEN
T1 - Interpretable Deep Biomarker for Serial Monitoring of Carotid Atherosclerosis Based on Three-Dimensional Ultrasound Imaging
AU - Chen, Xueli
AU - Fan, Xinqi
AU - Chiu, Bernard
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
PY - 2023
Y1 - 2023
N2 - We developed an interpretable deep biomarker known as Siamese change biomarker generation network (SCBG-Net) to evaluate the effects of therapies on carotid atherosclerosis based on the vessel wall and plaque volume and texture features extracted from three-dimensional ultrasound (3DUS) images. To the best of our knowledge, SCBG-Net is the first deep network developed for serial monitoring of carotid plaque changes. SCBG-Net automatically integrates volume and textural features extracted from 3DUS to generate a change biomarker called AutoVT (standing for Automatic integration of Volume and Textural features) that is sensitive to dietary treatments. The proposed AutoVT improves the cost-effectiveness of clinical trials required to establish the benefit of novel treatments, thereby decreasing the period that new anti-atherosclerotic treatments are withheld from patients needing them. To facilitate the interpretation of AutoVT, we developed an algorithm to generate change biomarker activation maps (CBAM) localizing regions having an important effect on AutoVT. The ability to visualize locations with prominent plaque progression/regression afforded by CBAM improves the interpretability of the proposed deep biomarker. Improvement in interpretability would allow the deep biomarker to gain sufficient trust from clinicians for them to incorporate the model into clinical workflow.
AB - We developed an interpretable deep biomarker known as Siamese change biomarker generation network (SCBG-Net) to evaluate the effects of therapies on carotid atherosclerosis based on the vessel wall and plaque volume and texture features extracted from three-dimensional ultrasound (3DUS) images. To the best of our knowledge, SCBG-Net is the first deep network developed for serial monitoring of carotid plaque changes. SCBG-Net automatically integrates volume and textural features extracted from 3DUS to generate a change biomarker called AutoVT (standing for Automatic integration of Volume and Textural features) that is sensitive to dietary treatments. The proposed AutoVT improves the cost-effectiveness of clinical trials required to establish the benefit of novel treatments, thereby decreasing the period that new anti-atherosclerotic treatments are withheld from patients needing them. To facilitate the interpretation of AutoVT, we developed an algorithm to generate change biomarker activation maps (CBAM) localizing regions having an important effect on AutoVT. The ability to visualize locations with prominent plaque progression/regression afforded by CBAM improves the interpretability of the proposed deep biomarker. Improvement in interpretability would allow the deep biomarker to gain sufficient trust from clinicians for them to incorporate the model into clinical workflow.
KW - 3D Ultrasound Imaging
KW - Activation Map
KW - Carotid Atherosclerosis
KW - Deep Biomarker
KW - Interpretable Machine Learning
UR - http://www.scopus.com/inward/record.url?scp=85174714654&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-43987-2_29
DO - 10.1007/978-3-031-43987-2_29
M3 - Conference contribution
SN - 9783031439865
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 295
EP - 305
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
A2 - Greenspan, Hayit
A2 - Greenspan, Hayit
A2 - Madabhushi, Anant
A2 - Mousavi, Parvin
A2 - Salcudean, Septimiu
A2 - Duncan, James
A2 - Syeda-Mahmood, Tanveer
A2 - Taylor, Russell
T2 - 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Y2 - 8 October 2023 through 12 October 2023
ER -