TY - JOUR
T1 - Hepatic metabolism gene expression and gut microbes in offspring, subjected to in-utero PFOS exposure and postnatal diet challenges
AU - Shi, Feng
AU - Boncan, Delbert Almerick T.
AU - Wan, Hin Ting
AU - Chan, Ting Fung
AU - Zhang, Eric L.
AU - Lai, Keng Po
AU - Wong, Chris Kong-Chu
N1 - Publisher Copyright:
© 2022 The Authors
PY - 2022/12
Y1 - 2022/12
N2 - We examined the changes in hepatic metabolic gene expression and gut microbiota of offspring exposed to PFOS in-utero. At GD17.5, our data showed that PFOS exposure decreased fetal bodyweights and hepatic metabolic gene expressions but increased relative liver mass and lipid accumulation. At PND21, in-utero high-dose PFOS-exposed offspring exhibited significantly greater bodyweight (catch-up-growth), associated with significant induction of hepatic metabolic gene expression. In addition, 16SrRNA-sequencing of the cecal samples revealed an increase in carbohydrate catabolism but a reduction in microbial polysaccharide synthesis and short-chain fatty acid (SCFA) metabolism. From PND21-80, a postnatal diet-challenge for the offspring was conducted. At PND80 under a normal diet, in-utero high-dose PFOS-exposed offspring maintained the growth “catch-up” effect. In contrast, in a high-fat-diet, the bodyweight of in-utero high-dose PFOS-exposed adult offspring were significantly lesser than the corresponding low-dose and control groups. Even though in the high-fat-diet, the in-utero PFOS-exposed adult offspring showed significant upregulation of hepatic metabolic genes, the lower bodyweight suggests that they had difficulty utilizing high-fat nutrients. Noteworthy, the metagenomic data showed a significant reduction in the biosynthesis of microbial polysaccharides, vitamin B, and SCFAs in the PFOS-exposed adult offspring. Furthermore, the observed effects were significantly reduced in the PFOS-exposed adult offspring with the high-fat diet but supplemented with sucrose. Our study demonstrated that in-utero PFOS exposure caused inefficient fat metabolism and increased the risk of hepatic steatosis in offspring.
AB - We examined the changes in hepatic metabolic gene expression and gut microbiota of offspring exposed to PFOS in-utero. At GD17.5, our data showed that PFOS exposure decreased fetal bodyweights and hepatic metabolic gene expressions but increased relative liver mass and lipid accumulation. At PND21, in-utero high-dose PFOS-exposed offspring exhibited significantly greater bodyweight (catch-up-growth), associated with significant induction of hepatic metabolic gene expression. In addition, 16SrRNA-sequencing of the cecal samples revealed an increase in carbohydrate catabolism but a reduction in microbial polysaccharide synthesis and short-chain fatty acid (SCFA) metabolism. From PND21-80, a postnatal diet-challenge for the offspring was conducted. At PND80 under a normal diet, in-utero high-dose PFOS-exposed offspring maintained the growth “catch-up” effect. In contrast, in a high-fat-diet, the bodyweight of in-utero high-dose PFOS-exposed adult offspring were significantly lesser than the corresponding low-dose and control groups. Even though in the high-fat-diet, the in-utero PFOS-exposed adult offspring showed significant upregulation of hepatic metabolic genes, the lower bodyweight suggests that they had difficulty utilizing high-fat nutrients. Noteworthy, the metagenomic data showed a significant reduction in the biosynthesis of microbial polysaccharides, vitamin B, and SCFAs in the PFOS-exposed adult offspring. Furthermore, the observed effects were significantly reduced in the PFOS-exposed adult offspring with the high-fat diet but supplemented with sucrose. Our study demonstrated that in-utero PFOS exposure caused inefficient fat metabolism and increased the risk of hepatic steatosis in offspring.
UR - http://www.scopus.com/inward/record.url?scp=85137087381&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2022.136196
DO - 10.1016/j.chemosphere.2022.136196
M3 - Article
C2 - 36041519
SN - 0045-6535
VL - 308
JO - Chemosphere
JF - Chemosphere
M1 - 136196
ER -