TY - JOUR
T1 - Head motion coefficient-based algorithm for distracted driving detection
AU - Chui, Kwok Tai
AU - Alhalabi, Wadee
AU - Liu, Ryan Wen
N1 - Publisher Copyright:
© 2019, Emerald Publishing Limited.
PY - 2019/6/7
Y1 - 2019/6/7
N2 - Purpose: Concentration is the key to safer driving. Ideally, drivers should focus mainly on front views and side mirrors. Typical distractions are eating, drinking, cell phone use, using and searching things in car as well as looking at something outside the car. In this paper, distracted driving detection algorithm is targeting on nine scenarios nodding, head shaking, moving the head 45° to upper left and back to position, moving the head 45° to lower left and back to position, moving the head 45° to upper right and back to position, moving the head 45° to lower right and back to position, moving the head upward and back to position, head dropping down and blinking as fundamental elements for distracted events. The purpose of this paper is preliminary study these scenarios for the ideal distraction detection, the exact type of distraction. Design/methodology/approach: The system consists of distraction detection module that processes video stream and compute motion coefficient to reinforce identification of distraction conditions of drivers. Motion coefficient of the video frames is computed which follows by the spike detection via statistical filtering. Findings: The accuracy of head motion analyzer is given as 98.6 percent. With such satisfactory result, it is concluded that the distraction detection using light computation power algorithm is an appropriate direction and further work could be devoted on more scenarios as well as background light intensity and resolution of video frames. Originality/value: The system aimed at detecting the distraction of the public transport driver. By providing instant response and timely warning, it can lower the road traffic accidents and casualties due to poor physical conditions. A low latency and lightweight head motion detector has been developed for online driver awareness monitoring.
AB - Purpose: Concentration is the key to safer driving. Ideally, drivers should focus mainly on front views and side mirrors. Typical distractions are eating, drinking, cell phone use, using and searching things in car as well as looking at something outside the car. In this paper, distracted driving detection algorithm is targeting on nine scenarios nodding, head shaking, moving the head 45° to upper left and back to position, moving the head 45° to lower left and back to position, moving the head 45° to upper right and back to position, moving the head 45° to lower right and back to position, moving the head upward and back to position, head dropping down and blinking as fundamental elements for distracted events. The purpose of this paper is preliminary study these scenarios for the ideal distraction detection, the exact type of distraction. Design/methodology/approach: The system consists of distraction detection module that processes video stream and compute motion coefficient to reinforce identification of distraction conditions of drivers. Motion coefficient of the video frames is computed which follows by the spike detection via statistical filtering. Findings: The accuracy of head motion analyzer is given as 98.6 percent. With such satisfactory result, it is concluded that the distraction detection using light computation power algorithm is an appropriate direction and further work could be devoted on more scenarios as well as background light intensity and resolution of video frames. Originality/value: The system aimed at detecting the distraction of the public transport driver. By providing instant response and timely warning, it can lower the road traffic accidents and casualties due to poor physical conditions. A low latency and lightweight head motion detector has been developed for online driver awareness monitoring.
KW - Correlation analysis
KW - Distracted driving
KW - Head motion
KW - Public transport
KW - Road safety
KW - Social good
UR - http://www.scopus.com/inward/record.url?scp=85067210073&partnerID=8YFLogxK
U2 - 10.1108/DTA-09-2018-0086
DO - 10.1108/DTA-09-2018-0086
M3 - Article
AN - SCOPUS:85067210073
SN - 2514-9288
VL - 53
SP - 171
EP - 188
JO - Data Technologies and Applications
JF - Data Technologies and Applications
IS - 2
ER -