TY - JOUR
T1 - Growth and antioxidative response of two mangrove plants to interaction between aquaculture effluent and BDE-99
AU - Farzana, Shazia
AU - Cheung, Siu Gin
AU - Zhou, Hai Chao
AU - Tam, Nora Fung Yee
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/4/20
Y1 - 2019/4/20
N2 - Mangroves are subject to contamination of polybrominated diphenyl ethers (PBDEs) due to waste and wastewater disposal, and aquaculture effluent (AE) from nearby aquaculture activities. However, the response of mangrove plants to these two stresses and their interaction has seldom been reported. A six-month microcosm study, planted with either Kandelia obovata (Ko) or Avicennia marina (Am), the two most dominant species in South China mangrove swamps, was conducted to investigate the effects of BDE-99, and the interactions of BDE-99 (one of the most abundant PBDE congeners) and AE on growth and physiological responses of these plants. In addition to mixed stressors, both stressors were also applied individually. Results showed that Avicennia was more tolerant to BDE-99 contamination than Kandelia, as reflected by the reduced biomass, but increased superoxide radical (O 2 −⁎ ) release and malondialdehyde (MDA) content in Kandelia. Addition of AE alleviated toxicity of BDE-99 in Kandelia by promoting biomass but lowering oxidative stress and MDA production. The hormesis model also demonstrated that the interaction between BDE-99 and AE on leaf and root MDA and O 2 −⁎ content in both Kandelia and Avicennia were mostly antagonistic. Activities of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) in both leaf and root of Kandelia were reduced by BDE-99. On the contrary, BDE-99 significantly enhanced the three enzyme activities in Avicennia root at month 3. Addition of AE also significantly enhanced root CAT, POD and SOD activities, and leaf SOD in both plant species to remove excess ROS produced under BDE-99 exposure. These results indicated that the tolerance of mangrove plants to oxidative stresses depended on antioxidative enzymes that were inducible.
AB - Mangroves are subject to contamination of polybrominated diphenyl ethers (PBDEs) due to waste and wastewater disposal, and aquaculture effluent (AE) from nearby aquaculture activities. However, the response of mangrove plants to these two stresses and their interaction has seldom been reported. A six-month microcosm study, planted with either Kandelia obovata (Ko) or Avicennia marina (Am), the two most dominant species in South China mangrove swamps, was conducted to investigate the effects of BDE-99, and the interactions of BDE-99 (one of the most abundant PBDE congeners) and AE on growth and physiological responses of these plants. In addition to mixed stressors, both stressors were also applied individually. Results showed that Avicennia was more tolerant to BDE-99 contamination than Kandelia, as reflected by the reduced biomass, but increased superoxide radical (O 2 −⁎ ) release and malondialdehyde (MDA) content in Kandelia. Addition of AE alleviated toxicity of BDE-99 in Kandelia by promoting biomass but lowering oxidative stress and MDA production. The hormesis model also demonstrated that the interaction between BDE-99 and AE on leaf and root MDA and O 2 −⁎ content in both Kandelia and Avicennia were mostly antagonistic. Activities of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) in both leaf and root of Kandelia were reduced by BDE-99. On the contrary, BDE-99 significantly enhanced the three enzyme activities in Avicennia root at month 3. Addition of AE also significantly enhanced root CAT, POD and SOD activities, and leaf SOD in both plant species to remove excess ROS produced under BDE-99 exposure. These results indicated that the tolerance of mangrove plants to oxidative stresses depended on antioxidative enzymes that were inducible.
KW - Aquaculture effluent
KW - BDE-99
KW - Hormesis model
KW - Mangroves
KW - Toxicity
UR - http://www.scopus.com/inward/record.url?scp=85060524941&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2019.01.263
DO - 10.1016/j.scitotenv.2019.01.263
M3 - Article
C2 - 30708295
AN - SCOPUS:85060524941
SN - 0048-9697
VL - 662
SP - 796
EP - 804
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -