Extended-range prediction model using NSGA-III optimized RNN-GRU-LSTM for driver stress and drowsiness

Kwok Tai Chui, Brij B. Gupta, Ryan Wen Liu, Xinyu Zhang, Pandian Vasant, J. Joshua Thomas

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Road traffic accidents have been listed in the top 10 global causes of death for many decades. Traditional measures such as education and legislation have contributed to limited improvements in terms of reducing accidents due to people driving in undesirable statuses, such as when suffering from stress or drowsiness. Attention is drawn to predicting drivers’ future status so that precautions can be taken in advance as effective preventative measures. Common prediction algorithms include recurrent neural networks (RNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) networks. To benefit from the advantages of each algorithm, nondominated sorting genetic algorithm-III (NSGA-III) can be applied to merge the three algorithms. This is named NSGAIII- optimized RNN-GRU-LSTM. An analysis can be made to compare the proposed prediction algorithm with the individual RNN, GRU, and LSTM algorithms. Our proposed model improves the overall accuracy by 11.2–13.6% and 10.2–12.2% in driver stress prediction and driver drowsiness prediction, respectively. Likewise, it improves the overall accuracy by 6.9–12.7% and 6.9–8.9%, respectively, compared with boosting learning with multiple RNNs, multiple GRUs, and multiple LSTMs algorithms. Compared with existing works, this proposal offers to enhance performance by taking some key factors into account—namely, using a real-world driving dataset, a greater sample size, hybrid algorithms, and cross-validation. Future research directions have been suggested for further exploration and performance enhancement.

Original languageEnglish
Article number6412
JournalSensors
Volume21
Issue number19
DOIs
Publication statusPublished - 1 Oct 2021

Keywords

  • At-risk driving
  • Driver drowsiness
  • Driver stress
  • Gated recurrent unit
  • Intelligent transportation
  • Long short-term memory network
  • Multi-objective optimization
  • NSGA-III
  • Recurrent neural network

Fingerprint

Dive into the research topics of 'Extended-range prediction model using NSGA-III optimized RNN-GRU-LSTM for driver stress and drowsiness'. Together they form a unique fingerprint.

Cite this