Effects of topographical guidance cues on osteoblast cell migration

F. M. Refaaq, X. Chen, S. W. Pang

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

Cell migration is a fundamental process that is crucial for many biological functions in the body such as immune responses and tissue regeneration. Dysregulation of this process is associated with cancer metastasis. In this study, polydimethylsiloxane platforms with various topographical features were engineered to explore the influence of guiding patterns on MC3T3-E1 osteoblast cell migration. Focusing on the guiding effects of grating patterns, variations such as etch depth, pattern discontinuity, and bending angles were investigated. In all experiments, MC3T3-E1 cells on patterned surfaces demonstrated a higher migration speed and alignment when compared to flat surfaces. The study revealed that an increase in etch depth from 150 nm to 4.5 μm enhanced cell alignment and elongation along the grating patterns. In the presence of discontinuous elements, cell migration speed was accelerated when compared to gratings of the same etch depth. These results indicated that cell directionality preference was influenced by a high level of pattern discontinuity. On patterns with bends, cells were more inclined to reverse on 45° bends, with 69% of cells reversing at least once, compared to 54% on 135° bends. These results are attributed to cell morphology and motility mechanisms that are associated with surface topography, where actin filament structures such as filopodia and lamellipodia are essential in sensing the surrounding environment and controlling cell displacement. Knowledge of geometric guidance cues could provide a better understanding on how cell migration is influenced by extracellular matrix topography in vivo.

Original languageEnglish
Article number20003
JournalScientific Reports
Volume10
Issue number1
DOIs
Publication statusPublished - Dec 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Effects of topographical guidance cues on osteoblast cell migration'. Together they form a unique fingerprint.

Cite this