TY - JOUR
T1 - Developmental cardiotoxicity of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in marine medaka (Oryzias melastigma)
AU - Liu, Mengyuan
AU - Li, Jing
AU - Li, Jiali
AU - Zhou, Bingsheng
AU - Lam, Paul K.S.
AU - Hu, Chenyan
AU - Chen, Lianguo
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2024/3/5
Y1 - 2024/3/5
N2 - The application of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) as an antifouling biocide causes high toxicity to non-target marine organisms. To examine the developmental cardiotoxicity and mechanisms of DCOIT, we concurrently performed sub-chronic exposure and life-cycle exposure experiments using marine medaka embryos. After sub-chronic exposure to DCOIT at 1, 3, 10, and 33 μg/L, cardiac defects were caused by upregulation of cardiac gene transcriptions, decreasing heart size, and accelerating heartbeat. Hyperthyroidism in medaka larvae was identified as the cause of developmental cardiotoxicity of DCOIT sub-chronic exposure. In addition, parental life-cycle exposure to 1, 3, and 10 μg/L DCOIT led to transgenerational impairment of cardiogenesis in offspring medaka. A crossbreeding strategy discriminated a concentration-dependent mechanism of transgenerational cardiotoxicity. At 1 μg/L, the DCOIT-exposed female parent transferred a significantly higher amount of triiodothyronine (T3) hormone to offspring, corresponding to an accelerated heart rate. However, DCOIT at higher exposure concentrations modified the methylome imprinting in larval offspring, which was associated with cardiac dysfunction. Overall, the findings provide novel insights into the developmental cardiotoxicity of DCOIT. The high risks of DCOIT—even at environmentally realistic concentrations—raise concerns about its applicability as an antifoulant in a marine environment.
AB - The application of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) as an antifouling biocide causes high toxicity to non-target marine organisms. To examine the developmental cardiotoxicity and mechanisms of DCOIT, we concurrently performed sub-chronic exposure and life-cycle exposure experiments using marine medaka embryos. After sub-chronic exposure to DCOIT at 1, 3, 10, and 33 μg/L, cardiac defects were caused by upregulation of cardiac gene transcriptions, decreasing heart size, and accelerating heartbeat. Hyperthyroidism in medaka larvae was identified as the cause of developmental cardiotoxicity of DCOIT sub-chronic exposure. In addition, parental life-cycle exposure to 1, 3, and 10 μg/L DCOIT led to transgenerational impairment of cardiogenesis in offspring medaka. A crossbreeding strategy discriminated a concentration-dependent mechanism of transgenerational cardiotoxicity. At 1 μg/L, the DCOIT-exposed female parent transferred a significantly higher amount of triiodothyronine (T3) hormone to offspring, corresponding to an accelerated heart rate. However, DCOIT at higher exposure concentrations modified the methylome imprinting in larval offspring, which was associated with cardiac dysfunction. Overall, the findings provide novel insights into the developmental cardiotoxicity of DCOIT. The high risks of DCOIT—even at environmentally realistic concentrations—raise concerns about its applicability as an antifoulant in a marine environment.
KW - Antifouling
KW - DCOIT
KW - Developmental cardiotoxicity
KW - Methylome
KW - Thyroid
UR - http://www.scopus.com/inward/record.url?scp=85179500197&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2023.133176
DO - 10.1016/j.jhazmat.2023.133176
M3 - Article
C2 - 38070264
AN - SCOPUS:85179500197
SN - 0304-3894
VL - 465
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 133176
ER -