TY - JOUR
T1 - Development of a predictive risk model for all-cause mortality in patients with diabetes in Hong Kong
AU - Lee, Sharen
AU - Zhou, Jiandong
AU - Leung, Keith Sai Kit
AU - Wu, William Ka Kei
AU - Wong, Wing Tak
AU - Liu, Tong
AU - Wong, Ian Chi Kei
AU - Jeevaratnam, Kamalan
AU - Zhang, Qingpeng
AU - Tse, Gary
N1 - Publisher Copyright:
© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY. Published by BMJ.
PY - 2021/6/11
Y1 - 2021/6/11
N2 - Introduction Patients with diabetes mellitus are risk of premature death. In this study, we developed a machine learning-driven predictive risk model for all-cause mortality among patients with type 2 diabetes mellitus using multiparametric approach with data from different domains. Research design and methods This study used territory-wide data of patients with type 2 diabetes attending public hospitals or their associated ambulatory/outpatient facilities in Hong Kong between January 1, 2009 and December 31, 2009. The primary outcome is all-cause mortality. The association of risk variables and all-cause mortality was assessed using Cox proportional hazards models. Machine and deep learning approaches were used to improve overall survival prediction and were evaluated with fivefold cross validation method. Results A total of 273 678 patients (mean age: 65.4±12.7 years, male: 48.2%, median follow-up: 142 (IQR=106-142) months) were included, with 91 155 deaths occurring on follow-up (33.3%; annualized mortality rate: 3.4%/year; 2.7 million patient-years). Multivariate Cox regression found the following significant predictors of all-cause mortality: age, male gender, baseline comorbidities, anemia, mean values of neutrophil-to-lymphocyte ratio, high-density lipoprotein-cholesterol, total cholesterol, triglyceride, HbA1c and fasting blood glucose (FBG), measures of variability of both HbA1c and FBG. The above parameters were incorporated into a score-based predictive risk model that had a c-statistic of 0.73 (95% CI 0.66 to 0.77), which was improved to 0.86 (0.81 to 0.90) and 0.87 (0.84 to 0.91) using random survival forests and deep survival learning models, respectively. Conclusions A multiparametric model incorporating variables from different domains predicted all-cause mortality accurately in type 2 diabetes mellitus. The predictive and modeling capabilities of machine/deep learning survival analysis achieved more accurate predictions.
AB - Introduction Patients with diabetes mellitus are risk of premature death. In this study, we developed a machine learning-driven predictive risk model for all-cause mortality among patients with type 2 diabetes mellitus using multiparametric approach with data from different domains. Research design and methods This study used territory-wide data of patients with type 2 diabetes attending public hospitals or their associated ambulatory/outpatient facilities in Hong Kong between January 1, 2009 and December 31, 2009. The primary outcome is all-cause mortality. The association of risk variables and all-cause mortality was assessed using Cox proportional hazards models. Machine and deep learning approaches were used to improve overall survival prediction and were evaluated with fivefold cross validation method. Results A total of 273 678 patients (mean age: 65.4±12.7 years, male: 48.2%, median follow-up: 142 (IQR=106-142) months) were included, with 91 155 deaths occurring on follow-up (33.3%; annualized mortality rate: 3.4%/year; 2.7 million patient-years). Multivariate Cox regression found the following significant predictors of all-cause mortality: age, male gender, baseline comorbidities, anemia, mean values of neutrophil-to-lymphocyte ratio, high-density lipoprotein-cholesterol, total cholesterol, triglyceride, HbA1c and fasting blood glucose (FBG), measures of variability of both HbA1c and FBG. The above parameters were incorporated into a score-based predictive risk model that had a c-statistic of 0.73 (95% CI 0.66 to 0.77), which was improved to 0.86 (0.81 to 0.90) and 0.87 (0.84 to 0.91) using random survival forests and deep survival learning models, respectively. Conclusions A multiparametric model incorporating variables from different domains predicted all-cause mortality accurately in type 2 diabetes mellitus. The predictive and modeling capabilities of machine/deep learning survival analysis achieved more accurate predictions.
KW - epidemiology
KW - risk factors
UR - http://www.scopus.com/inward/record.url?scp=85105250877&partnerID=8YFLogxK
U2 - 10.1136/bmjdrc-2020-001950
DO - 10.1136/bmjdrc-2020-001950
M3 - Article
C2 - 34117050
AN - SCOPUS:85105250877
VL - 9
JO - BMJ Open Diabetes Research and Care
JF - BMJ Open Diabetes Research and Care
IS - 1
M1 - e001950
ER -