TY - JOUR
T1 - Contribution of ENT4 to adenosine uptake in AC16 human cardiomyocytes under simulated ischemic conditions and its potential role in cardioprotection
AU - Wong, Emily Sze Wan
AU - Li, Renkai
AU - Li, Jingjing
AU - Zheng, Chengwen
AU - Shiu, Polly Ho Ting
AU - Rangsinth, Panthakarn
AU - Seto, Sai Wang
AU - Leung, George Pak Heng
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature B.V.
PY - 2022/11
Y1 - 2022/11
N2 - Background: Nucleoside transporters are crucial in regulating the functions of adenosine. This study investigated the contribution of equilibrative nucleoside transporter (ENT) type 4 to adenosine transport in cardiomyocytes under simulated ischemic conditions and whether the inhibition of ENT4 could protect cardiomyocytes against ischemia-reperfusion injury. Methods: AC16 human cardiomyocytes were used to create a model to simulate ischemia/reperfusion injury. ENT4 activity was inhibited by decynium-22 or specific siRNA against ENT4. The protein expressions of nucleoside transporters were measured by western blot analysis. The transport activity was studied by [3?H]adenosine uptake. The cell injury was studied by biochemical assays. Results: The [3?H]adenosine uptake in AC16 cells was predominantly mediated by ENTs. ENT1 to ENT4 were present in AC16 cells and their protein expression levels were comparable in normal and ischemic conditions. Decynium-22 or siRNA against ENT4 did not affect the adenosine uptake in AC16 cells under normal conditions but could inhibit the adenosine uptake in AC16 cells by 28% under ischemic conditions. In addition, the cell viability and lactate dehydrogenase release of AC16 cells under ischemia conditions could be reduced by decynium-22 or siRNA against ENT4. Conclusion: The cell culture model has suggested that ENT4 may play a role in adenosine transport in cardiomyocytes under ischemic conditions. Inhibition or downregulation of ENT4 may be a potential approach for cardioprotection but this notion should be further validated using animal model.
AB - Background: Nucleoside transporters are crucial in regulating the functions of adenosine. This study investigated the contribution of equilibrative nucleoside transporter (ENT) type 4 to adenosine transport in cardiomyocytes under simulated ischemic conditions and whether the inhibition of ENT4 could protect cardiomyocytes against ischemia-reperfusion injury. Methods: AC16 human cardiomyocytes were used to create a model to simulate ischemia/reperfusion injury. ENT4 activity was inhibited by decynium-22 or specific siRNA against ENT4. The protein expressions of nucleoside transporters were measured by western blot analysis. The transport activity was studied by [3?H]adenosine uptake. The cell injury was studied by biochemical assays. Results: The [3?H]adenosine uptake in AC16 cells was predominantly mediated by ENTs. ENT1 to ENT4 were present in AC16 cells and their protein expression levels were comparable in normal and ischemic conditions. Decynium-22 or siRNA against ENT4 did not affect the adenosine uptake in AC16 cells under normal conditions but could inhibit the adenosine uptake in AC16 cells by 28% under ischemic conditions. In addition, the cell viability and lactate dehydrogenase release of AC16 cells under ischemia conditions could be reduced by decynium-22 or siRNA against ENT4. Conclusion: The cell culture model has suggested that ENT4 may play a role in adenosine transport in cardiomyocytes under ischemic conditions. Inhibition or downregulation of ENT4 may be a potential approach for cardioprotection but this notion should be further validated using animal model.
KW - Adenosine
KW - Cardioprotection
KW - Ischemia
KW - Nucleoside transporter
UR - http://www.scopus.com/inward/record.url?scp=85138167056&partnerID=8YFLogxK
U2 - 10.1007/s11033-022-07902-3
DO - 10.1007/s11033-022-07902-3
M3 - Article
C2 - 36107375
AN - SCOPUS:85138167056
SN - 0301-4851
VL - 49
SP - 11201
EP - 11208
JO - Molecular Biology Reports
JF - Molecular Biology Reports
IS - 11
ER -