TY - JOUR
T1 - Changes in estrogenicity and micropollutant concentrations across unit processes in a biological wastewater treatment system
AU - Chen, Jian Lin
AU - Ravindran, Shanthinie
AU - Swift, Simon
AU - Singhal, Naresh
N1 - Publisher Copyright:
© IWA Publishing 2018.
PY - 2018/3
Y1 - 2018/3
N2 - The behavior of 10 micropollutants, i.e. four estrogens (estrone, 17β-estradiol, estriol, 17α-ethynylestradiol), carbamazepine (CBZ), sulfamethoxazole (SMX), triclosan, oxybenzone, 4-nonylphenol, and bisphenol A, was investigated in a typical domestic wastewater treatment plant. LC-MS and yeast estrogen screen bioassay were used to study the changes in micropollutants and estrogenicity across unit processes in the treatment system. Primary treatment via sedimentation showed that only 4-nonylphenol was removed, but led to no significant change in estrogenicity. Secondary treatment by the biological nitrification-dentrification process showed complete removal of oxybenzone and partial removal of the estrogens, which led to a decrease in estrogenic activity from 80 to 48 ng/L as estradiol equivalent (EEq). Ultraviolet treatment completely degraded the estrogens and triclosan, but failed to lower the concentrations of bisphenol A, SMX, and CBZ; a decrease in estrogenic activity from 48 to 5 ng/L EEq across the unit, a value that was only slightly larger than the observed EEq of 1 ng/L for the deionized control. Similarly, the anaerobic digestion of sludge completely degraded estrogens, oxybenzone, and SMX, but had no impact on bisphenol A, triclosan, and CBZ. The study emphasises the need to complement chemical analyses with estrogenic bioassays to evaluate the efficacy of waste water treatment plants.
AB - The behavior of 10 micropollutants, i.e. four estrogens (estrone, 17β-estradiol, estriol, 17α-ethynylestradiol), carbamazepine (CBZ), sulfamethoxazole (SMX), triclosan, oxybenzone, 4-nonylphenol, and bisphenol A, was investigated in a typical domestic wastewater treatment plant. LC-MS and yeast estrogen screen bioassay were used to study the changes in micropollutants and estrogenicity across unit processes in the treatment system. Primary treatment via sedimentation showed that only 4-nonylphenol was removed, but led to no significant change in estrogenicity. Secondary treatment by the biological nitrification-dentrification process showed complete removal of oxybenzone and partial removal of the estrogens, which led to a decrease in estrogenic activity from 80 to 48 ng/L as estradiol equivalent (EEq). Ultraviolet treatment completely degraded the estrogens and triclosan, but failed to lower the concentrations of bisphenol A, SMX, and CBZ; a decrease in estrogenic activity from 48 to 5 ng/L EEq across the unit, a value that was only slightly larger than the observed EEq of 1 ng/L for the deionized control. Similarly, the anaerobic digestion of sludge completely degraded estrogens, oxybenzone, and SMX, but had no impact on bisphenol A, triclosan, and CBZ. The study emphasises the need to complement chemical analyses with estrogenic bioassays to evaluate the efficacy of waste water treatment plants.
KW - Endocrine-disrupting chemicals (EDCs)
KW - Estrogenicity
KW - Pharmaceuticals and personal care products (PPCPs)
KW - Wastewater treatment plant (WWTP)
KW - Yeast estrogen screen (YES)
UR - http://www.scopus.com/inward/record.url?scp=85045019780&partnerID=8YFLogxK
U2 - 10.2166/wst.2018.047
DO - 10.2166/wst.2018.047
M3 - Article
C2 - 29595169
AN - SCOPUS:85045019780
SN - 0273-1223
VL - 77
SP - 1673
EP - 1682
JO - Water Science and Technology
JF - Water Science and Technology
IS - 6
ER -