TY - JOUR
T1 - Butyrate protects endothelial function through PPARδ/miR-181b signaling
AU - Tian, Qinqin
AU - Leung, Fung Ping
AU - Chen, Francis M.
AU - Tian, Xiao Yu
AU - Chen, Zhenyu
AU - Tse, Gary
AU - Ma, Shuangtao
AU - Wong, Wing Tak
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/7
Y1 - 2021/7
N2 - Reports of the beneficial roles of butyrate in cardiovascular diseases, such as atherosclerosis and ischemic stroke, are becoming increasingly abundant. However, the mechanisms of its bioactivities remain largely unknown. In this study, we explored the effects of butyrate on endothelial dysfunction and its potential underlying mechanism. In our study, ApoE-/- mice were fed with high-fat diet (HFD) for ten weeks to produce atherosclerosis models and concurrently treated with or without sodium butyrate daily. Thoracic aortas were subsequently isolated from C57BL/6 wild-type (WT), PPARδ-/-, endothelial-specific PPARδ wild-type (EC-specific PPARδ WT) and endothelial-specific PPARδ knockout (EC-specific PPARδ KO) mice were stimulated with interleukin (IL)-1β with or without butyrate ex vivo. Our results demonstrated that butyrate treatment rescued the impaired endothelium-dependent relaxations (EDRs) in thoracic aortas of HFD-fed ApoE-/- mice. Butyrate also rescued impaired EDRs in IL-1β-treated thoracic aorta ring ex vivo. Global and endothelial-specific knockout of PPARδ eliminated the protective effects of butyrate against IL-1β-induced impairment to EDRs. Butyrate abolished IL-1β-induced reactive oxygen species (ROS) production in endothelial cells while the inhibitory effect was incapacitated by genetic deletion of PPARδ or pharmacological inhibition of PPARδ. IL-1β increased NADPH oxidase 2 (NOX2) mRNA and protein expressions in endothelial cells, which were prevented by butyrate treatment, and the effects of butyrate were blunted following pharmacological inhibition of PPARδ. Importantly, butyrate treatment upregulated the miR-181b expression in atherosclerotic aortas and IL-1β-treated endothelial cells. Moreover, transfection of endothelial cells with miR-181b inhibitor abolished the suppressive effects of butyrate on NOX2 expressions and ROS generation in endothelial cells. To conclude, butyrate prevents endothelial dysfunction in atherosclerosis by reducing endothelial NOX2 expression and ROS production via the PPARδ/miR-181b pathway.
AB - Reports of the beneficial roles of butyrate in cardiovascular diseases, such as atherosclerosis and ischemic stroke, are becoming increasingly abundant. However, the mechanisms of its bioactivities remain largely unknown. In this study, we explored the effects of butyrate on endothelial dysfunction and its potential underlying mechanism. In our study, ApoE-/- mice were fed with high-fat diet (HFD) for ten weeks to produce atherosclerosis models and concurrently treated with or without sodium butyrate daily. Thoracic aortas were subsequently isolated from C57BL/6 wild-type (WT), PPARδ-/-, endothelial-specific PPARδ wild-type (EC-specific PPARδ WT) and endothelial-specific PPARδ knockout (EC-specific PPARδ KO) mice were stimulated with interleukin (IL)-1β with or without butyrate ex vivo. Our results demonstrated that butyrate treatment rescued the impaired endothelium-dependent relaxations (EDRs) in thoracic aortas of HFD-fed ApoE-/- mice. Butyrate also rescued impaired EDRs in IL-1β-treated thoracic aorta ring ex vivo. Global and endothelial-specific knockout of PPARδ eliminated the protective effects of butyrate against IL-1β-induced impairment to EDRs. Butyrate abolished IL-1β-induced reactive oxygen species (ROS) production in endothelial cells while the inhibitory effect was incapacitated by genetic deletion of PPARδ or pharmacological inhibition of PPARδ. IL-1β increased NADPH oxidase 2 (NOX2) mRNA and protein expressions in endothelial cells, which were prevented by butyrate treatment, and the effects of butyrate were blunted following pharmacological inhibition of PPARδ. Importantly, butyrate treatment upregulated the miR-181b expression in atherosclerotic aortas and IL-1β-treated endothelial cells. Moreover, transfection of endothelial cells with miR-181b inhibitor abolished the suppressive effects of butyrate on NOX2 expressions and ROS generation in endothelial cells. To conclude, butyrate prevents endothelial dysfunction in atherosclerosis by reducing endothelial NOX2 expression and ROS production via the PPARδ/miR-181b pathway.
KW - Butyrate
KW - Endothelial function
KW - GSK0660 (CID: 46233311)
KW - GW0742 (CID: 9934458)
KW - MiR-181b
KW - NOX2
KW - PPARδ
KW - Sodium butyrate (CID: 5222465)
UR - http://www.scopus.com/inward/record.url?scp=85107901262&partnerID=8YFLogxK
U2 - 10.1016/j.phrs.2021.105681
DO - 10.1016/j.phrs.2021.105681
M3 - Article
C2 - 34019979
AN - SCOPUS:85107901262
SN - 1043-6618
VL - 169
JO - Pharmacological Research
JF - Pharmacological Research
M1 - 105681
ER -