TY - JOUR
T1 - Association between leucocyte telomere length and the risk of atrial fibrillation
T2 - An updated systematic review and meta-analysis
AU - Zheng, Yi
AU - Zhang, Nan
AU - Wang, Yueying
AU - Wang, Feng
AU - Li, Guangping
AU - Tse, Gary
AU - Liu, Tong
N1 - Publisher Copyright:
© 2022
PY - 2022/11
Y1 - 2022/11
N2 - Background and aims: Advancing age is the most important risk factor of atrial fibrillation (AF). The shortening of telomere length is a biomarker of biologic aging. There is an increasing body of evidence that leucocyte telomere length (LTL) is associated with the risk of AF development. However, the results in these studies were controversial. The current systematic review and meta-analysis was conducted to examine the role of LTL in predicting the incidence of AF. Methods and results: Observational studies reporting the association between LTL and the risk of AF were retrieved through 25th June, 2022 from PubMed and Embase. A total of twelve studies including 18,293 patients were included in the present analysis. Leucocyte telomere shortening was found to be an independent predictor of AF as a continuous variable in both univariate [OR:2.14; 95%CI(1.48,3.10); P < 0.0001] and multivariate analyses [OR:1.41;95%CI(1.11,1.79); P = 0.005], as well as categorical variable in multivariate analysis [OR:1.53; 95%CI(1.04,2.27); P = 0.03]. Furthermore, leucocyte telomere shortening was significantly associated with recurrent AF [OR:4.32;95%CI(2.42,7.69); P < 0.00001] but not new-onset AF [OR:1.14; 95%CI(0.90,1.45); P = 0.29]. Leucocyte telomere shortening was also associated with an increased risk of persistent AF [OR:14.73;95%CI (3.16,68.67); P = 0.0006] and paroxysmal AF [OR:2.74;95%CI(1.45,5.18); P = 0.002]. Besides, LTL was an independent predictor for progression from paroxysmal AF to persistent AF [OR:3.2;95%CI(1.66,6.18); P = 0.0005]. Differences between males [OR:1.99; 95%CI(1.29,3.06); P = 0.002] and females [OR:0.86; 95%CI (0.29,2.56);P = 0.79] were observed. Conclusions: Leucocyte telomere shortening predicts the risk of AF, especially recurrent AF. The predictive value is more prominent in males than in females. Shortening in LTL can predict the progression from paroxysmal to persistent AF.
AB - Background and aims: Advancing age is the most important risk factor of atrial fibrillation (AF). The shortening of telomere length is a biomarker of biologic aging. There is an increasing body of evidence that leucocyte telomere length (LTL) is associated with the risk of AF development. However, the results in these studies were controversial. The current systematic review and meta-analysis was conducted to examine the role of LTL in predicting the incidence of AF. Methods and results: Observational studies reporting the association between LTL and the risk of AF were retrieved through 25th June, 2022 from PubMed and Embase. A total of twelve studies including 18,293 patients were included in the present analysis. Leucocyte telomere shortening was found to be an independent predictor of AF as a continuous variable in both univariate [OR:2.14; 95%CI(1.48,3.10); P < 0.0001] and multivariate analyses [OR:1.41;95%CI(1.11,1.79); P = 0.005], as well as categorical variable in multivariate analysis [OR:1.53; 95%CI(1.04,2.27); P = 0.03]. Furthermore, leucocyte telomere shortening was significantly associated with recurrent AF [OR:4.32;95%CI(2.42,7.69); P < 0.00001] but not new-onset AF [OR:1.14; 95%CI(0.90,1.45); P = 0.29]. Leucocyte telomere shortening was also associated with an increased risk of persistent AF [OR:14.73;95%CI (3.16,68.67); P = 0.0006] and paroxysmal AF [OR:2.74;95%CI(1.45,5.18); P = 0.002]. Besides, LTL was an independent predictor for progression from paroxysmal AF to persistent AF [OR:3.2;95%CI(1.66,6.18); P = 0.0005]. Differences between males [OR:1.99; 95%CI(1.29,3.06); P = 0.002] and females [OR:0.86; 95%CI (0.29,2.56);P = 0.79] were observed. Conclusions: Leucocyte telomere shortening predicts the risk of AF, especially recurrent AF. The predictive value is more prominent in males than in females. Shortening in LTL can predict the progression from paroxysmal to persistent AF.
KW - Atrial fibrillation
KW - Biological aging
KW - Leucocyte telomere shortening
KW - Meta-analysis
KW - Predictor
UR - http://www.scopus.com/inward/record.url?scp=85135410488&partnerID=8YFLogxK
U2 - 10.1016/j.arr.2022.101707
DO - 10.1016/j.arr.2022.101707
M3 - Review article
C2 - 35932977
AN - SCOPUS:85135410488
SN - 1568-1637
VL - 81
JO - Ageing Research Reviews
JF - Ageing Research Reviews
M1 - 101707
ER -