Application of solid phase microextraction in the determination of paralytic shellfish poisoning toxins

Ivy O.M. Chan, Paul K.S. Lam, Richard H.Y. Cheung, Michael H.W. Lam, Rudolf S.S. Wu

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

A SPME-HPLC-post-column fluorescent derivatization method for the direct determination of saxitoxin (STX), the most potent paralytic shellfish poisoning (PSP) toxin, in water has been developed. Commercially available SPME devices with 50 μm Carbowax templated resin (CW/TPR) coating was found to be able to pre-concentrate STX from aqueous media. A special pre-conditioning treatment of soaking the SPME coating in 0.1 M NaOH solution significantly improved the extraction efficiency. The optimal pH for the SPME process is 8.1 and the equilibration time is 40 min. The partition coefficient, K, of the distribution of STX between the SPME coating and the aqueous media was measured to be 2.99 ± 0.04 × 103. Extracted toxin on the SPME stationary phase was difficult to be desorbed by the HPLC mobile phase under dynamic desorption mode. A static ion-pairing desorption technique using a desorption solvent mixture of 20 mM sodium 1-heptanesulfonate in 30% aqueous acetonitrile acidified with 50 mM sulfuric acid was developed to overcome this problem. The method detection limit and repeatability achieved by this SPME-HPLC method were 0.11 ng ml-1 and 3.7%, respectively, with a sample volume of just 5 ml of water. This analytical method is adequate for the monitoring of the PSP toxin in fresh/drinking waters. However, serious interference was observed when this technique was applied to saline water samples. This is probably due to competition of sodium ions with the cationic STX for absorption into the SPME stationary phase.

Original languageEnglish
Pages (from-to)1524-1529
Number of pages6
JournalAnalyst
Volume130
Issue number11
DOIs
Publication statusPublished - Nov 2005
Externally publishedYes

Fingerprint

Dive into the research topics of 'Application of solid phase microextraction in the determination of paralytic shellfish poisoning toxins'. Together they form a unique fingerprint.

Cite this