TY - JOUR
T1 - Advanced Functional Composite Materials toward E-Skin for Health Monitoring and Artificial Intelligence
AU - Sun, Qi Jun
AU - Lai, Qin Teng
AU - Tang, Zhenhua
AU - Tang, Xin Gui
AU - Zhao, Xin Hua
AU - Roy, Vellaisamy A.L.
N1 - Publisher Copyright:
© 2022 Wiley-VCH GmbH.
PY - 2023/3/10
Y1 - 2023/3/10
N2 - Electronic skin (E-skin), especially the wearable sensors efficiently detect various stimuli attracted huge research interest owing to their potential applications in health monitoring and artificial intelligence. On the other hand, functional polymer composites possessing excellent properties such as light weight, good flexibility, and superior electrical performances, are promising candidates as building blocks for flexible electronics. Accordingly, tremendous efforts are devoted to the development of polymer composites with functional properties for E-skin applications. Here, recent advances on the controlled fabrication of various fillers based functional polymer composites and their diverse applications in E-skin are reviewed. In addition, contemporary studies on fabrication strategies, working mechanisms, and device performance for E-skin based on the functional polymer composites are reviewed, including flexible pressure sensors, strain sensors, temperature sensors, energy harvesters, and transistors. Furthermore, the applications of functional composite based flexible electronics in healthcare and artificial intelligence are discussed. Finally, the existing challenges and opportunities for the functional composite materials based E-skin are summarized.
AB - Electronic skin (E-skin), especially the wearable sensors efficiently detect various stimuli attracted huge research interest owing to their potential applications in health monitoring and artificial intelligence. On the other hand, functional polymer composites possessing excellent properties such as light weight, good flexibility, and superior electrical performances, are promising candidates as building blocks for flexible electronics. Accordingly, tremendous efforts are devoted to the development of polymer composites with functional properties for E-skin applications. Here, recent advances on the controlled fabrication of various fillers based functional polymer composites and their diverse applications in E-skin are reviewed. In addition, contemporary studies on fabrication strategies, working mechanisms, and device performance for E-skin based on the functional polymer composites are reviewed, including flexible pressure sensors, strain sensors, temperature sensors, energy harvesters, and transistors. Furthermore, the applications of functional composite based flexible electronics in healthcare and artificial intelligence are discussed. Finally, the existing challenges and opportunities for the functional composite materials based E-skin are summarized.
KW - E-skin
KW - artificial intelligence
KW - flexible sensors
KW - functional composites
KW - health monitoring
UR - http://www.scopus.com/inward/record.url?scp=85141130487&partnerID=8YFLogxK
U2 - 10.1002/admt.202201088
DO - 10.1002/admt.202201088
M3 - Review article
AN - SCOPUS:85141130487
VL - 8
JO - Advanced Materials Technologies
JF - Advanced Materials Technologies
IS - 5
M1 - 2201088
ER -