Abstract
Constructed tide tanks were used to examine the accumulation and distribution of heavy metals in various components of a simulated mangrove ecosystem. Young Kandelia candel plants grown in mangrove soils were irrigated with wastewater of various strengths twice a week for a period of one year. The amounts of heavy metals released via tidal water and leaf litter were monitored at regular time intervals. The quantities of heavy metals retained in mangrove soil and various plant parts were also determined. Results show that most heavy metals from wastewater were retained in soils with little being uptake by plants or released into tidal seawater. However, the amounts of metals retained in plants on a per unit dry weight base were higher than those in soils as the biomass production from the young mangrove plants was much smaller when compared to the vast quantity of soils used in this study. A significantly higher heavy metal content was found in roots than in the aerial parts of the mangrove plant, indicating that the roots act as a barrier for metal translocation and protect the sensitive parts of the plant from metal contamination. In both soil and plant, concentrations of Zn, Cd, Pb and Ni increased with the strengths of wastewater, although the bioaccumulation factors for these metals decreased when wastewater strengths increased. These results suggest that the mangrove soil component has a large capacity to retain heavy metals, and the role of mangrove plants in retaining metals will depend on plant age and their biomass production.
Original language | English |
---|---|
Pages (from-to) | 67-75 |
Number of pages | 9 |
Journal | Hydrobiologia |
Volume | 352 |
DOIs | |
Publication status | Published - 1997 |
Externally published | Yes |
Keywords
- Accumulation
- Heavy metal
- Kandelia
- Mangrove
- Sewage