TY - GEN
T1 - A Self-supervised Joint Training Framework for Document Reranking
AU - Zhu, Xiaozhi
AU - Hao, Tianyong
AU - Cheng, Sijie
AU - Wang, Fu Lee
AU - Liu, Hai
N1 - Publisher Copyright:
© Findings of the Association for Computational Linguistics: NAACL 2022 - Findings.
PY - 2022
Y1 - 2022
N2 - Pretrained language models such as BERT have been successfully applied to a wide range of natural language processing tasks and also achieved impressive performance in document reranking tasks. Recent works indicate that further pretraining the language models on the task-specific datasets before fine-tuning helps improve reranking performance. However, the pre-training tasks like masked language model and next sentence prediction were based on the context of documents instead of encouraging the model to understand the content of queries in document reranking task. In this paper, we propose a new self-supervised joint training framework (SJTF) with a selfsupervised method called Masked Query Prediction (MQP) to establish semantic relations between given queries and positive documents. The framework randomly masks a token of query and encode the masked query paired with positive documents, and use a linear layer as a decoder to predict the masked token. In addition, the MQP is used to jointly optimize the models with supervised ranking objective during fine-tuning stage without an extra further pre-training stage. Extensive experiments on the MS MARCO passage ranking and TREC Robust datasets show that models trained with our framework obtain significant improvements compared to original models.
AB - Pretrained language models such as BERT have been successfully applied to a wide range of natural language processing tasks and also achieved impressive performance in document reranking tasks. Recent works indicate that further pretraining the language models on the task-specific datasets before fine-tuning helps improve reranking performance. However, the pre-training tasks like masked language model and next sentence prediction were based on the context of documents instead of encouraging the model to understand the content of queries in document reranking task. In this paper, we propose a new self-supervised joint training framework (SJTF) with a selfsupervised method called Masked Query Prediction (MQP) to establish semantic relations between given queries and positive documents. The framework randomly masks a token of query and encode the masked query paired with positive documents, and use a linear layer as a decoder to predict the masked token. In addition, the MQP is used to jointly optimize the models with supervised ranking objective during fine-tuning stage without an extra further pre-training stage. Extensive experiments on the MS MARCO passage ranking and TREC Robust datasets show that models trained with our framework obtain significant improvements compared to original models.
UR - http://www.scopus.com/inward/record.url?scp=85137321203&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85137321203
T3 - Findings of the Association for Computational Linguistics: NAACL 2022 - Findings
SP - 1056
EP - 1065
BT - Findings of the Association for Computational Linguistics
T2 - 2022 Findings of the Association for Computational Linguistics: NAACL 2022
Y2 - 10 July 2022 through 15 July 2022
ER -